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Abstract

An intensely debated question in the lifecycle literature is whether
housing wealth is viewed by households as a ¯nancial asset that will be
used to support general consumption after retirement. This paper uses
the newly available longitudinal Canadian Survey of Labour and Income
Dynamics (SLID) to investigate the factors in°uencing elderly households'
residential mobility choices. A dynamic non-linear panel (longitudinal)
data dynamic model is employed. I use the Bover-Arellano estimator
(Chamberlain's class of estimators), based on reduced form predictions
of the latent dependent variable. The residential mobility of the elderly
appears to be a®ected mostly by moving costs, which are di®erent for
owners and non-owners.

¤I thank Vincent Hildebrand, Sung-Hee Jeon, Gail Kalika, Barry Smith, Byron Spencer
and Michael Veall for valuable suggestions and comments. I owe very special thanks to my
supervisor Tom Crossley for encouragement, advice and many helpful discussions. Thanks
also go to Cindy Cook and Tina Hotton for their help at the Statistics Canada Research
Data Centre at McMaster University and University of Toronto. A SEDAP fellowship grant is
gratefully acknowledged. All errors are my own. E-mail address: ostrovsk@dept.econ.yorku.ca

1



1 Introduction

Much of the debate about the housing decisions of the elderly concerns the role of

housing wealth in the lifecycle consumption/savings decision of the household.

A traditional theoretical framework for such analysis is the lifecycle theory,

which in its simplest (`orthodox', certainty or certainty-equivalence) version as-

sumes the systematic accumulation of assets during the working life and gradual

decumulation during retirement. Formally, the problem is usually formulated

as a discrete time dynamic programming problem in which households make

sequential consumption decisions based on the information available to them at

each period (Deaton [1992]). A reduction of wealth in later life has particular

importance in the lifecycle literature

\...since all standard consumption models predict that eventually

households will start to dissave whether or not there is a bequest

motive or uncertain lifetime. Thus this prediction can be considered

a \critical experiment" for the lifecycle model in its most general

form" (Browning and Lusardi [1996]).

One of the hotly debated questions is whether housing wealth is viewed by

households as a ¯nancial asset that will be used to support general consumption

after retirement. The certainty version of the lifecycle theory rests on the as-

sumption of fungibility, which implies the equality of the marginal propensity to

consume from di®erent sources of wealth. If the assumption of fungibility holds

then households view housing as a substitute for other ¯nancial assets and it

should be included in the analysis of the adequacy of household savings. In

this case, we should observe reduction in housing wealth after retirement unless
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households are unable - due to high ¯nancial and psychological costs of moving

- to release their housing equity (Venti and Wise [2001]).

Earlier versions of the lifecycle theory and the assumption of fungibility

have been sharply criticized by behavioral economists, who argue that house-

holds have a set of \mental accounts" with varying marginal propensities to

consume for di®erent assets (Thaler [1994]). They also argue that households

view housing di®erently from other assets and will not use their housing wealth

for general consumption in later life (Levine [1999]). If the assumption of fun-

gibility of housing does not hold then it should be excluded from the analysis

of the adequacy of household savings for retirement. The dynamics of housing

markets, in this case, are a \sideshow" (Skinner [1996]) and the elderly will

not generally consider moving regardless of moving costs or changes in housing

prices.

It is important to point out that modern versions of the standard lifecycle

theory recognize that agents may not treat all sources of wealth equally due

to precautionary motive or liquidity constraints (Browning and Lusardi [1996],

Browning and Crossley [2001]). The precautionary motive is particularly impor-

tant in later life. Uncertainty about future medical expenses may prevent the

elderly form \downsizing" (moving to a smaller house), particularly if housing

is viewed as an asset of \last resort" to be used only to pay for nursing care or

to support a surviving spouse (Venti and Wise [2001]).

The residential mobility (moving) of the elderly households is directly linked

to the question of housing adjustment in later life. Changes in the amount of

housing consumption are usually observed as a two step process: (1) a decision to

move followed by (2) changes in housing consumption conditional on moving. In
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this study I concentrate on the ¯rst step and investigate the factors in°uencing

household decisions to move in the context of a dynamic approach using panel

(longitudinal) data from the newly available longitudinal Canadian Survey of

Labour and Income Dynamics (SLID), which is discussed in more detail in

Section 3.1 A longitudinal approach is particularly relevant in the analysis of

housing behavior over time as it re°ects the evolution of household demographic,

economic and lifecycle circumstances.

This is the ¯rst study of residential mobility study using Canadian panel

data. Its a contribution to the international literature is that it deals explicitly

with the issue of unobserved individual heterogeneity in a dynamic framework.

The importance of controlling for individual e®ects (individual housing tastes)

is emphasized by Feinstein and McFadden [1989] who test and reject the null

of no individual heterogeneity in their study. They caution that their results

may be seriously biased as they do not control for individual e®ects. BÄorsch-

Supan and Pollakowski [1990] control for individual heterogeneity using a static

¯xed-e®ects multinomial logit model. VanderHart [1998] attempts to separate

the e®ect of economic and non-economic variables on housing decisions using a

dynamic multinomial logit model but does not explicitly control for individual

heterogeneity. My approach is di®erent from the abovementioned studies. I

employ the two-step within-group and asymptotically e±cient three-step GMM

estimators for limited dependent variable models with unobserved individual

e®ects developed by Bover and Arellano [1997], which are extensions to the

minimum distance estimator suggested by Chamberlain [1984]. An important

feature of all Chamberlain's class of estimators is that they allow for relaxing the

1Unfortunately, SLID does not provide information nesessary to investigate the issue of
changes in housing consumption.
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assumption that individual e®ects are uncorrelated with explanatory variables.

To control for habit persistence I consider a dynamic speci¯cation. The inclusion

of the lagged dependent variable usually poses considerable technical problems.

The method used in this study is an attempt to avoid some of the pitfalls speci¯c

to dynamic models. The advantages of the method as well as possible drawbacks

are discussed in Section 5.

Like previous authors, I ¯nd no strong support for the prediction of a simple

(certainty-equivalence) lifecycle model that the residential mobility of the elderly

is primarily motivated by the desire to consume out of housing wealth. In

particular, one result is that proportionally more elderly who were non-owners

at the beginning of the study became owners than vice versa. I also ¯nd that

those with lower moving costs - non-owners, single people, and urban dwellers

- are more likely to adjust their housing than those with higher moving costs.

The results indicate a response to the changes in housing prices that is stronger

than has previously been reported (Skinner [1996]), particularly for owners.

The paper is organized as follows. Section 2 o®ers a brief literature review.

Section 3 familiarizes the reader with the structure of the Survey of Labour

and Income Dynamics and describes the study sample. Section 4 presents some

descriptive statistics concerning mobility. Section 5 outlines the relevant econo-

metric issues in panel data analysis and discusses the Bover-Arellano estimator.

Section 6 shows the Monte-Carlo simulations results. Section 7 describes the

variables and presents the estimation results. Finally, Section 8 o®ers some

conclusions and points to the directions for future research.
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2 Literature

As mentioned above, a classical certainty (\stripped down") version of the life-

cycle theory predicts a reduction in housing equity (\downsizing") in later life

as a part of general wealth decumulation to keep the lifetime marginal util-

ity of consumption constant. A desire for housing adjustment should lead to

high mobility rates among the elderly, particularly among the owners, and high

transition rates from ownership to renting.

In two in°uential studies Venti and Wise [1989] and Feinstein and McFad-

den [1989] found little evidence that the residential mobility of the elderly is

in°uenced by the desire to consume out of housing equity. They also found that

mobility rates do not particularly depend on the wealth of the seniors. Contrary

to the logic of the lifecycle theory, those with high non-housing wealth and low

housing equity are much more likely to move than those with low non-housing

wealth but high housing equity (Venti and Wise [1989]). Generally, the mobil-

ity rates among the elderly are considerably lower than among the non-elderly

and elderly renters are much more mobile than elderly owners (Venti and Wise

[1989]). Also puzzling seems to be the ¯nding that home equity has a negative

e®ect on the probability that a homeowner will move or become a renter (Merrill

[1984]).

While the impact of economic factors on the housing choices of the elderly

appears to be muted, several studies have found that housing transitions are

strongly related to non-economic lifecycle events, such as retirement and changes

in family composition, in particular the loss of a spouse (Venti and Wise [1989],

Feinstein and McFadden [1989], Ermisch and Jenkins [1999]). The elderly are

interpreted to be reluctant movers who often move out of necessity rather than
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economic considerations. A sharp downturn in health status may leave an el-

derly person no choice other than to move to a health care facility or nursing

home. This is in line with the fact that mobility falls with age but rises for

the \older" elderly (Feinstein and McFadden [1989], Sheiner and Weil [1992],

Megbolugbe et al. [1997]).

Browning and Lusardi [1996], and Browning and Crossley [2001] argue that

the importance of non-economic variables is not inconsistent with modern ver-

sions of lifecycle theory that account for uncertainty, bequest motive, imperfect

markets, and habit formation. On one hand, lifecycle changes such as changes

in household size or health status have a direct e®ect by changing the marginal

utility of housing consumption (Deaton [1992]). More importantly, however,

non-economic events may have an indirect e®ect on housing choices by a®ecting

future economic variables. As VanderHart [1998] put it:

\The onset of a physical limitation will undoubtedly have a direct

e®ect on housing decisions, but may also have an indirect e®ect via

the expectation of higher health care costs, lower future income,

faster depletion of ¯nancial assets in the future, and higher owner-

occupied maintenance costs from the decontinuation of do-it-yourself

repair."

Using a data sample from the Panel Study of Income Dynamics (PSID),

VanderHart demonstrates that the role of economic factors such as income and

¯nancial assets for tenure transition after retirement may be more important

than previously thought and that their e®ect may have been erroneously at-

tributed to non-economic variables in other studies.

Health uncertainty alone may explain why the elderly are reluctant to deplete
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their housing wealth. A simple lifecycle model may overestimate the level of

dissaving after retirement by ignoring the uncertainty caused by potentially

large out-of-pocket medical expenses (Palumbo [1999]). Skinner [1996] suggests

that housing wealth may play the role of a precautionary \bu®er" that can

be cashed out in the event of an income or health downturn, or widowhood,

when the demand for housing services is likely to decline as well. Thus, it

may be viewed as a form of self-insurance against retirement contingencies and

potentially large out-of-pocket medical expenses, and thereby reduce the need

for other precautionary savings.

Several studies have investigated the importance of moving costs - including

psychological costs of separation - on older households' housing decisions. Venti

and Wise [1990] argue that the high transaction cost of moving do not explain

the lack of \downsizing" in later life. Feinstein [1996], on the other hand, shows

that mobility costs considerably reduce the residential mobility of the elderly in

response to changes in their health status. Megbolugbe et al. [1997] suggest that

the elderly can potentially bene¯t from \reverse mortgage" programs that would

allow homeowners to \unlock" their housing equity while continuing to live in

their homes. Such programs usually o®er several di®erent options including

lump sum payments, payments on a monthly basis for a ¯xed term, payments

on a monthly basis for as long as the elderly live in their home, or as a line

of credit (Fratantoni [1999]). So far there has been little demand for \reverse

mortgages" although that may be explained by the lack of awareness of such

programs among the elderly.

Many of these issues can not be analyzed in the context of a static cross-

sectional framework. An importance of a dynamic approach in studies of resi-
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dential mobility has long been recognized (Venti and Wise [1989], Feinstein and

McFadden [1989], Megbolugbe et al. [1997], VanderHart [1998]). As Henderson

and Ioannides [1987] point out, an obvious problem with static analysis is that,

typically, it attributes historical choices to today's condition. Housing is a very

expensive good and, for most families, housing expenditures are the largest part

of total family expenditures. A transition from renting to owning that the ma-

jority of households make some time along their lifecycle often requires a large

downpayment and long term ¯nancing (mortgage), so the decision to become

an owner usually comes as a result of long term planning 2.

The di®erence between age and cohort e®ects underscores another important

advantage of a dynamic approach. Such an approach based on longitudinal data

would present an opportunity to separate age and cohort e®ects that are indis-

tinguishable in the context of cross-section data (BÄorsch-Supan and Pollakowski

[1990], Deaton [1997], Myers [1999], Dieleman [2001]). The panel data models

became particularly attractive in the past decade as the speed of computing

has increased tremendously and thus the handling of data has become much

easier (Dieleman [2001]). The theoretical aspects of panel data models will be

discussed in more detail in Section 5.

There have been several studies that introduced some dynamic element and

used panel data. However, these studies were often con¯ned to the descriptive

analysis of hazard rates or tenure transitions (Venti and Wise [1989], Feinstein

and McFadden [1989], Megbolugbe et al. [1997]). VanderHart [1998] attempts,

in a dynamic framework, to disentangle direct and indirect e®ects of lifecycle

events in a study of residential mobility of the elderly. He uses a conventional

2Lifecycle housing dynamics are often described by the concept of \housing career." Be-
coming an owner is one of the stages in such a career.

9



multinomial logit model that ignores individual e®ects. BÄorsch-Supan and Pol-

lakowski [1990], on the other hand, use a conditional ¯xed-e®ects multinomial

logit model (based on Chamberlain [1984]) which allows them to control for

individual e®ects but is not explicitly dynamic.

I am not aware of any dynamic analysis of residential mobility among the

elderly based on Canadian data. Jones [1996] studied residential mobility among

the elderly in the context of a simple static model based on a single cross-

sectional survey. The results based on the Canadian Family Expenditure Survey

(FAMEX) suggest that households that have diminished in size (for instance,

widowed homeowners) are more likely to cease homeownership. As Jones himself

admits, given the small sample and the simplicity of his model, his results should

be treated with caution.

3 SLID and Study Sample

3.1 SLID

SLID was designed to have rotating overlapping panels, with each new six-year

panel starting half way through the life-span of the previous one. The ¯rst labor

and income interviews were conducted by Statistics Canada in January and May

1994 for reference year 1993. The second six-year panel was introduced in 1996.

When the ¯rst panel ended in 1999, a third one began.

The main objective of the survey is to support research on income and labor

market dynamics. However, in addition to the very detailed information on

income and personal and family characteristics, it also includes information on

residential mobility and housing tenure. Combined with the longitudinal aspect

of SLID this creates a powerful tool for the analysis of lifecycle events including
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residential mobility. Longitudinal respondents are followed for six year after the

preliminary interview, even if they move. Of course, there are some practical

constraints and operational limits to SLID's capacity to follow people. For

persons moving outside Canada and the continental United States, tracing will

be done to identify only those who will subsequently return. If they return

interviewing is resumed.

The sample for each SLID panel is a subset of the sample selected for the

Canadian Labour Force Survey (LFS). The SLID income concepts are very

similar to those in the Canadian Survey of Consumer Finances (SCF), which was

replaced by SLID (after ¯ve years of overlap) in 1998. Like LFS, SLID covers the

population of the ten provinces (residents of Yukon and Northwest Territories

are excluded) with the exception of Indian reserves. Also excluded are the

residents of institutions3 (unless under six months) and military barracks. The

size of the ¯rst six-year panel is 15,000 households which includes about 31,0000

persons aged 16 and over.

Over the life span of a panel up to 13 interview are conducted. First, a pre-

liminary interview (SLID uses computer-assisted interviewing) is conducted at

the beginning of each panel to collect background information. Labor interviews

are conducted every January for six years and refer to experience in previous

calendar year. For example, the ¯rst annual interview took place in January

1994, and the reference period was 1993. Income interviews are conducted each

May for six years in a similar manner. The income interviews are deferred until

May to take advantage of income tax time (the deadline for ¯ling tax return

3The concept of institutions includes childrens group homes and orphanages, nursing
homes, chronic care hospitals, residents for senior citizens, hospitals, psychiatric institutions,
treatment centres and institutions for the physically handicapped, correctional and penal
institutions, young o®enders facilities and jails.
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forms in Canada is April 30). The respondents have an option of giving Statis-

tics Canada permission to access their tax information instead of responding to

detailed questions about each year's income.

To insure better representation the urban centres are divided into strata

which, in turn, are divided into \clusters" constituting the primary sampling

units. A sample of units in large apartment buildings is selected based on

information supplied by Canada Mortgage and Housing Corporation. Primary

sampling units in rural areas are selected on the basis of well-de¯ned physical

features such as rivers, roads, etc.

Proxy response is accepted in SLID. Usually only one member of the house-

hold answers questions for all members. The response rates are quite high,

with the highest in Newfoundland (around 90% in the ¯rst year and 87% in the

second) and the lowest in British Columbia (85% and 77% ).

3.2 Study Sample

The data used in this study are drawn from the ¯rst four years (1996-1999) of

the second SLID panel, which started in 1996 and will continue until 2001. It

would be desirable to use a longer panel; unfortunately, some of the important

variables were introduced only when the second panel started, which was 1996,

so the ¯rst three years of the ¯rst panel (which began in 1993) could not be

used. 1999 was the last year available at the time of the study.

Due to the overlapping structure of SLID the choice of a four year span

is essentially a trade o® between a longer panel and larger sample size. A

three-period panel (1996-1998) would take advantage of a larger sample drawn

from both the ¯rst and second panels. The decision to have a longer panel is

motivated by the fact that even if the sample is drawn only from the second panel
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the sample size after imposing age and other restrictions is still considerable

(2822 household heads), so the bene¯t of having an additional period in the

sample outweighs the cost of reducing the sample size.

One of the issues in longitudinal studies is the choice of the unit of analy-

sis. SLID data are collected on the individual level. For the purpose of cross-

sectional studies, Statistics Canada has constructed family variables. However,

the construction of family variables is more straight forward in cross-sectional

studies than in longitudinal studies (Duncan and Hill [1985], Butlin [1994]). In

cross-sectional studies a family or a household are identi¯ed at certain point in

time. It is implicitly assumed that their composition is unchanged during the

reference period.

In longitudinal studies such an assumption is implausible, since the com-

position of many families and households will change over the period of study.

A household constructed during the ¯rst year of the panel may split into sev-

eral households by the last year. Following all the \splits" may not only be

extremely di±cult but also misleading as their socio-economic attributes may

be very di®erent from the socio-economic attributes of the original household.

Duncan and Hill [1985] proposed an \attributional" approach. They have

noticed that households can be conveniently followed by tracking, for instance,

household heads and attributing to them the characteristics of the household in

which they live. Changes in the household composition in this case are regarded

as changes in individual's characteristics and treated as a demographic variable.

This approach is recommended by SLID (Butlin, 1994) and used in this study.

At the ¯rst stage only major income earners4 (MIE) in the households (both

4If more than one person has the same income, the major income earner is de¯ned to be
the oldest.
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men and women) aged 60 and over in 1996 were selected. The sample consists

of 1622 male and 1200 female MIEs. Table 1 presents the proportion of male

and female owners (and, by implication non-owners) in the sample. There is

a noticeable di®erence in the proportion as between households with male and

female MIEs; there is a higher proportion of male owners. Over 80% of male

MIEs are owners while only about 60% of female MIEs are owners. There is a

small reduction in ownership among both groups by 1999 although the reduction

among female MIEs is slightly more pronounced.

1996 1997 1998 1999

male female male female male female male female
owned 1349 752 1350 748 1346 737 1331 711
% 83.2 63.7 83.2 62.3 83.0 61.4 82.1 59.3

Table 1: Sample size and proportion of owners, by sex

Table 2 shows the income distribution in 1996. Median income was $19269.

Most respondents, over 60%, were retired (Table 3). There is, however, a con-

siderable degree of inconsistency in the answers. For example, some respondents

(mostly women) gave their status as \retired" or \keeping house" interchange-

ably in di®erent years.

Two hundred and thirty two household MIEs (8.22% of the sample) held

university degrees. A considerable proportion of MIEs (357 or 12.65%) have

never had or raised a child.

percentile 20 40 50 60 80

income $12621 $16172 $19269 $23108 $34930

Table 2: Income Distribution in 1996
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Major activity (unavailable for 1999) 1996 1997 1998

Working, looking for work or in school 435 347 287
Retired 2039 2218 2273
Other (keeping house, caring for disabled, etc.) 348 257 262

Table 3: Major Activity

4 Descriptive Analysis

SLID was designed to record the number of moves during the reference year

for each individual. In practice, however, the SLID variable \nbmov" (number

of times moved) is set to 1 even if the number of moves is greater than one.

Thus, we know only whether a person moved at least once during the reference

year. Another problem is that although the date of the (last) move is available,

the date of other life cycle events that might in°uence the decision to move,

such as the death of a spouse, are not. Hence, it is impossible to know exactly

whether the individual moved before or after such event (more on this in the

next section).

The number of `movers' is 133, 116, 125 and 119 in 1996, 1997, 1998, and

1999 respectively. Overall, 415 (14.7%) moved at least once during the 4 year

period. In the vast majority of cases the whole household moved. The average

income of `movers' was $22987, while the average income of `stayers' was $25185.

Unfortunately, SLID does not have asset information. I used the information

about investment income as a proxy for the household assets. The average in-

vestment income of `movers' was lower ($9823) than that of `stayers' ($11883).

Table 4 shows the average annual proportion of 'movers' for ¯ve di®erent per-

centile group. The mobility rate for the highest investment income group is the

lowest while the mobility rate for the lowest investment income group is the
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highest.

Average annual % of `movers'
Percentile group By total income By investment income

1st (low) 4.78 6.25
2nd 4.92 3.96
3rd 4.56 3.72
4th 4.43 4.26
5th 3.14 3.42

Table 4: Income groups and average annual proportion of movers

The residents of British Columbia had the highest level of residential mobil-

ity. At least 22% of those who resided in BC have moved at least once over the

4 year period (Table 5). Nova Scotia had the lowest rate (10%). In general, the

Maritime Provinces, particularly Nova Scotia and Prince Edward Island, had

considerably lower mobility rates than other provinces. Most of the moves took

place within a province. The overwhelming majority of `movers' (an average of

78.6 %) moved within 50km from the place where they had lived before.

Province (t-1) Moved at least once

Newfoundland 14%
Prince Edward Island 12%
Nova Scotia 10%
New Brunswick 16%
Quebec 19%
Ontario 18%
Manitoba 17%
Saskatchewan 18%
Alberta 16%
British Columbia 22%

Table 5: Mobility by province

Table 6 shows the relationship between residential mobility and health.

Those on the periphery of the health spectrum (`excellent' or `poor') are more

likely to move than those who describe their health `good' or `very good'. This
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supports a proposition that there may be two health related reasons for mobil-

ity: those who feel `excellent' are likely to migrate for reasons of amenity, while

those who are in `poor' health are more likely to move out of necessity (Hayward

[2000]).

health in '96 excellent very good good fair poor
moved in '97 (%) 5.69 3.70 3.29 4.40 5.73

health in '97 excellent very good good fair poor
moved in '98 (%) 4.43 3.70 3.70 5.85 7.29

health in '98 excellent very good good fair poor
moved in '99 (%) 4.21 3.62 3.70 5.49 5.76

Table 6: Health and mobility

As mentioned above, a decline in health may play an important role in the

housing choices of the elderly. I de¯ned a decline in health status as a transition

to `poor'. Table 7 shows that approximately 5.6% of those whose health had

declined in period t-1 moved in period t compared to 4.3% of those whose health

had not.

One of the reasons the elderly may not \downsize" is the bequest motive.

Venti and Wise [1989] and Feinstein and McFadden [1989] present evidence

that the bequest motive is not a major factor that causes the elderly not to

withdraw wealth from housing. To assess its role I compared the mobility rates

for households with or without children (Table 7). Interestingly enough, the

rates are almost the same - 4.48% for the households in which the head have

never had or raised a child compared 4.35% for the households with children.

This result is similar to Venti and Wise [1989] who show that the change in

housing equity at the time of sale by the elderly persons without children is

about the same as the change for those with children.
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Households in which household heads are married5 have a considerably lower

proportion of `movers' than those in which household heads are not married.

This is also in line with the suggestion that the elderly often move out of neces-

sity, when they no longer can take care of themselves. The proportion of `movers'

among urban household is almost twice the proportion of `movers' among rural

households. I will return to the role of tenure, poor health and urban residency

in the econometric analysis.

Yes No

Health declined at t-1 ( average annual % of 'movers') 5.56 4.26
Ever had or raised a child 4.35 4.48
Married at t 3.24 5.52
Urban dweller at t-1 4.87 2.49

Table 7: Proportion of movers with speci¯ed status

Table 8 also shows a much higher proportion of `movers' among non-owners.

The average percentage of `movers' among owners is 2.72 compared to 8.66

percent among non-owners. The result echoes Venti and Wise [1989] who report

that renters are almost three times as likely to move as owners.

status in 1996 status in 1997 status in 1998 status in t-1
owners non- owners non- owners non- owners non-

moved (%) own. own. own. own.

in 1997 2.62 8.46

in 1998 2.86 8.98

in 1999 2.69 8.53

in t (ave.) 2.72 8.66

Table 8: Mobility by tenure

During the preliminary interview in 1995, 75.7% of households owned their

dwelling. By 1999, the proportion of owners decreased to 72.4%. However,

proportionally more non-owners have become owners than vice versa (Table 9).

5Including common law partners
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7.07% of those who were owners in 1995 became non-owners by 1999, while

8.31% of those who were non-owners in 1995 became owners by 1999. The

higher transition rate to ownership is puzzling. If indeed the major reason

for mobility in later life was the desire to \downsize" we would expect to see

the opposite trend, at least to some degree. This is consistent with Venti and

1995 1996 1997 1998 1999

All owners 2136 2101 2098 2083 2042
% 75.69 74.45 74.34 73.81 72.36

Owners in 1995 owners 2136 2069 2056 2031 1985
non-owners - 67 80 105 151

Non-owners in 1995 owners - 32 42 52 57
non-owners 686 654 644 634 629

Table 9: Changing Tenure

Wise [1989] who point out that the reason for this result is that the renters are

much more likely to move, not that they are more likely than owners to switch

tenures. Another possible explanations that a renter is more likely to drop out

the sample.

Some information about the motivations for a move could be drawn from

the reasons given by the respondents themselves. Unfortunately, the design of

the survey question about the reasons for moving is not very helpful. One of the

answer options is \moved to a new residence." This answer is chosen by the vast

majority of the `movers'. Clearly, it does not add much to our understanding

of the reasons for moving.

5 Econometric Issues

A general version of life cycle theory asserts that in each period individuals

(households) choose an optimal consumption plan based on their assessment
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of the expected present value of the remaining life time utility. Applied to

residential mobility, the theory suggests that individuals (households) compare

their expected present value of the remaining life time utility if they move EUm

with the remaining life time utility if they stay EUs and make a decision to

move if

Ey¤ = EUm ¡ EUs ¡ Cm > 0;

where y¤ is the net bene¯t of moving and Cm is the utility cost of moving.

The expected utility in both cases (moving and staying) will be a function

of variables that describe the present period individual's (household's) wealth,

characteristics of current dwelling and demographics (Feinstein and McFadden

[1989]).

Formally, if the decision to move is described by a binary [0; 1] (1 = move; 0 =

stay) random variable y then

Eyit = Pr(yit = 1) = F (Ey¤
it);

where Ey¤
it is the expected net bene¯t of moving of the ith household in period

t and F is a probability function. In a standard random utility approach, y¤
it is

a continuous random variable that can be regarded as an index function

y¤
it = wit± + ´i + "it;

where wit set of explanatory variables, ± is a vector of coe±cients and ´i is

unmeasured individual e®ect. Applied to residential mobility one can think

about individual e®ects as a person's psychological cost of moving or simply

\taste" for mobility6.

6Feinstein and McFadden [1989] tested their data for the null of "no individual heterogene-
ity." The hypothesis was strongly rejected.
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There are two basic frameworks for modelling unobserved heterogeneity7:

² ¯xed e®ects models in which ´i are assumed to be unit (individual) -

speci¯c and ¯xed over time,

² random e®ects models in which ´i are random variables such that ´i

~N(0; ¾2
´).

In the ¯rst case we condition on ´i, in the second case we consider the

distribution of ´i.

A ¯xed e®ect static linear model can easily be estimated by di®erencing

out ´i. For example, we can transform the data into deviations from the cluster

mean, which allows us to treat unobserved heterogeneity as a nuisance parameter

and avoid its estimation altogether while producing an e±cient and consistent

estimator of ¯, called the within group estimator or, simply, within-estimator.

A random e®ects model is often referred to as a variance-component model

because it implies that ¾2
y = ¾2

´ + ¾2
" : The OLS covariance estimator of ± is

not BLUE in ¯nite samples but the GLS (generalized-least-squares) estima-

tor is. An important extension to the random e®ects panel data model has

been introduced by Chamberlain [1984]. He discusses the case when individ-

ual e®ects are correlated with explanatory variables and there exist some joint

distribution for (xi1; :::; xiT ; ´i). The necessary assumption in his analysis is

that E(uitjxi1; :::; xiT ; ´i) = 0, which implies that xit are exogenous. It is not

restrictive to write the linear predictor of ´i as

E(´ijxi1; :::; xiT ) = a0 + a1xi1 + a2xi2 + +aT xiT ;

7The bene¯ts of using panel data have been widely explored in the context of linear models
(exellent book-length reviews are Hsiao [1986], Baltagi [1995], Matyas and Sevestre [1996],
Arellano and Honore [1999]).
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where a = V ¡1(xi)Cov(xi; ´i).
The linear predictor of y can now be written in reduced form as

E(yitjxi1; :::; xiT ) = ¯xit + E(´ijxi1; :::; xiT ) = »i + ¼i1xi1 + ::: + ¼iT xiT :

Given the exogeneity of x, the coe±cients ¼ form matrix ¦, which has a dis-

tinctive structure:

¦ = ¯I + ¶a0;

where I is a T £ T identity matrix and ¶ is a T £ 1 vector of ones. An e±cient

estimator of ¯ can be obtained by using minimum-distance approach (or GMM)

that is by minimizing the distance between the estimated ¦ and the matrix of

structural coe±cients. It is possible that some time-invariant variables re°ect-

ing measured heterogeneity such as sex, race, union status and so on, can be

absorbed in ¦. A solution to this problem is discussed in Hausman and Taylor

[1981].

Fewer results are available for non-linear discrete choice models although

some signi¯cant progress has been made in recent years. Consider the following

(static) binary choice probit model for N individuals (households) observed T

consecutive time periods:

yit = 1(¯0xit + "it);

where 1(:) denotes an indicator function, which takes values 0 and 1 depending

on whether (:) is negative or positive. If "it~N [0; 1] then the panel nature of

the data is irrelevant and we can consider a pooled regression. If we want to

model individual heterogeneity explicitly then we should consider a di®erent set

of assumptions.
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As in the linear case, suppose that "it can be decomposed as

"it = ´i + uit;

where ´i is the group speci¯c e®ect independent of uit, E(uitjxi1; :::; xiT ; ´i) = 0

and (Var of uit is normalized to one because in binary models the scale factor

is unidenti¯able). Then,

yit = 1(¯0xit + ´i + uit)

A simple random e®ects probit model in which individual e®ects are assumed

to be uncorrelated with the explanatory variables can be de¯ned as

E(yit) = ©(® + ¯0
xxit + ¯0

ddit + ´i);

where yit is a binary choice variable indicating whether the household moved

during the reference year, xit is a vector of exogenous explanatory variables

that include household total earnings, investment income and housing price

index/consumer price index ratio for the province in which the household resides,

dit is a vector of demographic variables, ´i is an individual speci¯c random

variable such that ´i~N(0; ¾2
´) and © is the cumulative normal distribution

function. The estimation of the random e®ects model is based on Butler and

Mo±tt [1982] and requires Gauss-Hermite quadrature for computation.

As in linear models, the assumption that ´i's are uncorrelated with xit's has

serious limitations. To relax this assumption we need to assume a speci¯c func-

tional form of ´i. One of the possibilities is to assume (following Chamberlain)

that ´i is linearly dependent on xi = (x0
i1:::x

0
iT )0, that is ´i=¸0xi + !i , where

!i ~IN [0; ¾2
!]. Then,

yit = 1(¯0xit + ¸0xi + !i + uit);
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where E(!i+uit) = 0: If we assume that V ar[uit] = 1; then V ar[!i+uit] = 1+¾2
!

and the variance-covariance matrix is IT +¾2
!¶¶0. The inclusion of ¸0xi produces

cross-equation restrictions on the coe±cients.

We can consider probit equation for each t. The distribution for yit condi-

tional on xi but marginal on ´i has a probit form:

Prob(yit = 1) = F [(1 + ¾2
!)¡1=2(¯0xit + ¸0xi)]

The matrix of the multivariate probit coe±cients is:

D = diag(1 + ¾2
!)¡1=2[(¯0I + ¶¸0]:

This can be solved for (1 + ¾2
!)¡1=2¯ and (1 + ¾2

!)¡1=2¸. We can estimate ¯

and ¸ by running T probit equations separately and imposing D = diag(1 +

¾2
!)¡1=2[(¯0I + ¶¸0] as a constraint using a minimum distance estimator (see

Chamberlain [1984]).8

Although Chamberlain's minimum distance estimator is consistent and ef-

¯cient, the retrieval of the structural form parameters is computationally in-

volved. Bover and Arellano [1997] proposed a simple alternative to the Cham-

berlain's minimum distance estimator, which does not require non-linear opti-

mization. It is discussed in the next subsection.

5.1 Bover-Arellano Estimators

Bover and Arellano [1997] proposed a simple two-step estimator for limited de-

pendent variable models, which may include lags of the dependent variable,

other endogenous explanatory variables and unobserved individual e®ects. The

8Recent developments in the ¯eld have produced altogether di®erent estimation methods
for limited dependent variable panel data models based on simulated moments (see Keane
[1994]).
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estimator is based on reduced form predictions of the latent endogenous vari-

ables and can be viewed as a member of Chamberlain's class of random e®ects

minimum distance estimators. As such, it is consistent and asymptotically nor-

mal for a ¯xed number of periods. Although the within-group Bover-Arellano

estimator is not asymptotically e±cient since it implicitly uses a non-optimal

weighting matrix, it is possible to obtain, in one more step, a linear GMM

estimator that is asymptotically e±cient.

A particularly interesting feature of the Bover-Arellano estimator is the sep-

aration of the speci¯cation searches at each level of estimation. The primary

goal at the level of the reduced form is to ¯nd satisfactory estimates of the latent

variables and asymptotic variance-covariance matrix at each period. Once this

goal is achieved, di®erent models can be tried and tested on the structural form

level.9

5.1.1 Static Model

Consider, ¯rst, a static random e®ects limited dependent variable (LDV) model

y¤
it = x0

it¯ + uit

uit = ´i + ºit (i = 1; :::; N ; t = 1; :::; T )

where xit is an exogenous variable such that E(vitjxi1; xi2; :::; xiT ; ´i) = 0, ´i

is an unobservable individual e®ect potentially correlated with xit, and y¤
it is a

dependent latent variable which is not directly observable. Chamberlain [1984]

suggests the following parametrization of ´i

E(´ijxi1; xi2; :::; xiT ) = ¸0 + ¸0
1xi1 + ¸0

2xi2 + ::: + ¸0
2xiT + ¸0

¤ri

9The only application of the Bover-Arellano estimator known to me is a study of the
demand for tobacco in Spain (Labeaga [1999]).

25



where ri is a vector of variables that includes nonlinear (quadratic, cubic and

so on) terms in the x's as well as time invariant variables. Hence, y¤
i can be

rewritten in the reduced form as

y¤
i = ¦zi + "i

where zi = (x0
i1; x

0
i2; :::; x

0
iT ; r0

i).

The transformation of the variables into the deviations from the mean elim-

inates the ´i's.

y+
it = X+

i ¯ + º+
i

where y+
it = Qy¤

i , X+
i = QXi, º+

i = Qºi and Q = IT ¡ ¶¶0=T . If y¤
i is directly

observed, the OLS regression gives us the within-estimator of ¯. However, even

if y¤
i is not directly observed, the following expression for the restrictions

X+
i ¯ = Q¦zi

implies that

¯ =

Ã
NX

i=1

X+0
i X+

i

!¡1 NX

i=1

X+0
i ¦zi

To estimate ¯, we can replace ¦ with a consistent estimator b¦ and y¤
i with a

consistent reduced form predictor byi. Bover and Arellano [1997] show that if b¦ is

a consistent and asymptotically normal estimator of ¦, then b̄ is also consistent

and asymptotically normal. The asymptotic variance of can be consistently

estimated as

AV AR( b̄) =

Ã
NX

i=1

X+0
i X+

i

!¡1

M 0 bV M

Ã
NX

i=1

X+0
i X+

i

!¡1

;

where M =
P

i(X
+
i ­ zi) and bV is a consistent estimator of V .
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A consistent estimator of ¦ can be obtained using a simple probit speci-

¯cation based on the assumption that the errors "it in the reduced form are

independent of zi and "itjzi~N(0; ¾2). Using ¾2 = 1 as a normalization, we

have

Pr(yit = 1jzi) = ©(¼0
tzi)

where ©(:) is the N(0; 1) cdf and ¼t is the t-th row of ¦.

This model can be extended to the case of time-series heteroskedasticity in

which "itjzi~N(0; ¾2
t ) so that Pr(yit = 1jzi) = ©(¼¤0

t zi), where ¼¤
t = ¼t=¾t:

The asymptotic variance matrix bV can be calculated as follows. Let be b¼

an estimate of ¼ such that b¼ = vec(b¦) minimizes s(¼) =
PT

t=1 st, where st

is a di®erentiable criterion (for instance, a log likelihood function) and st =

PN
i=1 sit(yit; zi; ¼t). Under usual regularity conditions, the Taylor series expan-

sion of @s(b¼)
@¼ around the true value of ¼ suggests an estimate of bV of the form

bV =
1

N
bH¡1ª bH¡1

where bH = diag
³
N¡1 @2bst

@¼t@¼0
t

´
and bª = N¡1

PN
i=1

@bsit

@¼t

@bsis

@¼s
.

5.1.2 Within Group Dynamic Estimator

Generally, the inclusion of the lagged dependent variable into a ¯xed-e®ects

model makes OLS within-group inconsistent due to the correlation of the lagged

dependent variable with the residual. The problem can be avoided by including

y¤
i(t¡1) as opposed to yi(i¡1). Bover and Arellano point out that by conditioning

on yi(t¡1) one is conditioning on past choices while by conditioning on y¤
i(t¡1)

one is specifying distributed lagged e®ects of past exogenous variables and past

27



errors on current choices. Consider a dynamic model of the form

y¤
it = ®y¤

i(t¡1) + x0
it¯ + uit = w¤0

it ± + uit

uit = ´i + ºit

As above we assume that E(´ijzi) = ¸0zi. We also assume that E(y¤
i1jzi) =

¹0zi so the reduced model is the same as in the case of the static model. For

the set of the last (T ¡ 1) equations, it can be rewritten as

(I0 ¡ ®L)y¤
i = X0

i¯ + ´i¶ + ºi

where I0 is the trim operator I0 = (0
...IT¡1)(T¡1)£T , L is the lag operator

L = (IT¡1

...0)(T¡1)£T , Xi is the last (T ¡ 1) observations for each unit, and ºi

are (T ¡ 1)£ 1 vectors. Letting B = I0 ¡ aL and Q be of order (T ¡ 1) we have

QBy¤
i = X+

i ¯ + º+
i :

We can rewrite the restrictions in the form X+
i ¯ = QB¦zi or X+

i ¯ =

Q(I0 ¡ ®L)¦zi. If Wi = (L¦zi

...Xi) and W+
i = QWi, then

W+
i ± = QI0¦zi;

where ± = [®
...¯0]0: Hence,

± =

ÃX

i

W+0
i W+

i

!¡1 X

i

W+0
i I0¦zi:

Similarly to the argument for the static model estimator, Bover and Arellano

show that the estimator

b± =

ÃX

i

cW+0
i

cW+
i

!¡1 X

i

cW+0
i by+

i0;

where byi0 = I0
b¦zi and Wi = (L¦zi

...Xi) is consistent and asymptotically normal

given the consistency and asymptotic normality of b¦. The variance of b± can be
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consistently estimated as

AV AR(b±) =

ÃX

i

cW+
i

cW+
i

!¡1

cM 0 cV ¤ cM
ÃX

i

cW+
i

cW+
i

!¡1

;

where M =
P

i
cW+

i ­ zi and cV ¤ = ( bB ­ Im)bV ( bB0 ­ Im).

Bover and Arellano show that this estimator is ine±cient relative to Cham-

berlain's minimum distance estimator as it is essentially the minimum distance

estimator which uses a non-optimal weighting matrix. They also point out that

the robustness of b± depends directly on the robustness of byit. The good news,

however, is that speci¯cation searches at the level of the reduced form are sep-

arated from the speci¯cation searches at the level of structural equation, which

means that the functional form can be tested in the reduced form level until the

satisfactory byit's are available.

5.1.3 GMM Estimator

Finally, Bover and Arellano suggest a linear GMM estimator that can be ob-

tained in one more step and is asymptotically e±cient relative to the minimum

distance estimator. Consider again a dynamic model given by (8). Given that

within-groups equation errors are uncorrelated with the conditioning variables

zi; we can write down the optimal GMM estimator of ± based on the following

moment conditions

E [Z0
iQui] = 0;

where Zi = (I ­ z0
i), Q is a (T ¡ 1) £ (T ¡ 1) within-groups operator and ui =

(ui2; :::; uiT ): The estimator of ± based on the sample orthogonality condition

will be given by

bN(±) =
1

N

NX

i=1

Z0
i

³
by+
i0 ¡ cW+

i ±
´

;
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where byi0=I0
b¦zi, cWi =

µ
Lb¦zi

...Xi

¶
and symbol \+" denotes within-groups

transformations. A GMM estimator of ± is

"ÃX

i

cW+0
i Zi

!
AN

ÃX

i

Z0
i
cW+

i

!#¡1 ÃX

i

cW+0
i Zi

!
AN

ÃX

i

Z0
iby+

i0

!

where AN is a weighting matrix.

If AN = (
P

i Z0
iZi)

¡1, then the GMM estimator coincides with the WG

estimator

b± =

ÃX

i

cW+0
i

cW+
i

!¡1 X

i

cW+0
i by+

i0

Arellano and Bover [1995] showed that the (T ¡ 1) £ (T ¡ 1) within-groups

operator Q can be replaced by the (T ¡ 2)£ (T ¡ 1) ¯rst di®erence operator K,

so that a generic estimator takes form

"ÃX

i

cW 0
iK

0Z

!
AN

³X
Z0KcWi

´#¡1 ÃX

i

cW 0
iK

0Z

!
AN

ÃX

i

Z0Kby+
i0

!

Using K instead of Q allows to eliminate redundant moment conditions.

The optimal choice of AN is given by a consistent estimate of the inverse of

the covariance matrix of the orthogonality conditions. Let Mzz =
P

i Z0
iZi and

V ¤ = (B ­ Im)V (B0 ­ Im). The estimator of e± that uses AN = bV ¡1
b , where

bVb = (K ­ Im)Mzz
cV ¤Mzz (K0 ­ Im)

is asymptotically e±cient and asymptotically equivalent to the optimal mini-

mum distance estimator. Furthermore, a consistent estimate of the asymptotic

variance of is given by

AV AR(e±) =
h³P

i
cW 0

iK
0Zi

´
AN

³P
i Z0

iK
cWi

´i¡1

£

£
³P

i
cW 0

iK
0Zi

´
AN

bVbAN

³P
i Z0

iK
cWi

´ h³P
i
cW 0

iK
0Zi

´
AN

³P
i Z0

iK
cWi

´i¡1
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The estimate of bV depends on ® through matrix B, so the calculation of the

e±cient estimator will require a preliminary consistent estimate of ®. This esti-

mate can be obtained by estimating ± (WG estimator) which produces ine±cient

but consistent estimate of ®.

To capture the asymptotic behavior of the Bover-Arellano estimators, I

conducted Monte-Carlo simulations for two di®erent sample sizes N=250 and

N=1000 with T=5. The number of repetitions in most of the simulations was

100, however a set of simulations was performed with 1000 repetitions. Some of

the results of these simulations are presented in the next section.

6 Monte Carlo Simulations

For simplicity, I assume that there is only one independent variable. This vari-

able is generated according to a formula similar to the Nerlove (1971) process

so that the elements of the dependent variable X are correlated overtime. X is

generated as

xit = 0:1t + 0:5xi(t¡1) + xdit + dt + U [¡0:5; 0:5];

where t is a time trend, xdit is a dummy variable that equals 1 with probability

0.5 and dt is the time e®ects assumed to be -1 in all periods (see Lechner [1995])

and U[-0.5,0.5] is a uniformly distributed random variable that takes values from

-0.5 to 0.5. The value of xi0 is assumed to be zero. To reduce the e®ect of the

initial condition 7 waves of x were generated, however only the last 5 were used.

The important assumption of the model is that individual e®ects can be

approximated to any degree by a polynomial expansion. Generally, a linear

speci¯cation for individual e®ects may include quadratic or cubic terms. For

the purpose of simulations, I assumed that a combination of only linear terms
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provides a good approximation for the individual e®ects

´i = ¸0zi + N [0; 0:01];

where ¸0 = (1; 0:5; 0:3; 0;¡0:2) and zi = (xi1; xi2; :::xi5)
0: To ensure good ¯t, the

standard deviation of the random term was chosen to be small (0.1). Another

consideration in choosing the values of the coe±cients is to make the mean of

the latent dependent variable approximately 0.5 for ¯ = 1.

For the static model the dependent variable Y is generated according to

yit = ¯xit + ´i + u ¢ N [0; 1]:

In the dynamic speci¯cation, the lagged dependent variable was added

yit = ®yi(t¡1) + ¯xit + ´i + u ¢ N [0; 1]; yi0 = 0:

Simulations were performed for di®erent ¯ and u:

Table 10 summarizes the results for the static model where `nrep' (the num-

ber of repetitions) = 100 (It would be extremely time consuming to perform,

say, 1000 repetitions when N=1000. However, later I will present comparative

results for N=250 and nrep=1000). Table 10 contains the mean of ¯ estimates

for N (the number of individuals in the sample) =1000 and N=250, the mean

of estimated variance of ¯, the number of rejections for the 95% level of signi¯-

cance, the variance of ¯ in the obtained sample of estimates and the con¯dence

interval for the mean of ¯. \True" ¯ takes values 1, -1 and 0.8. Setting u equal

to 1 allows for the identi¯cation of the coe±cients. A set of simulation has been

performed for u = 0:8:

Even for N=250 (250 individuals) the estimates of ¯ and variance of ¯ are

close to the true values although the number of rejections (especially for ¯ = 1
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¯ = 1;u = 1 ¯ = ¡1;u = 1

N=1000 N=250 N=1000 N=250
Mean estimate of ¯ 1.0078 1.0230 -1.0115 -1.0177

Mean
\
var( b̄) 0.0021 0.0087 0.0021 0.0088

Number of rejections (95%) 4 10 2 3

Sample variance of b̄ 0.0021 0.0136 0.0016 0.0072

¯ = 0:8;u = 1 ¯ = 1;u = 0:8

Mean estimate of ¯ 0.0951 0.1015 1.2501 1.2920
("normalized" ¯) - - (1.0001) (1.0336)

Mean
\
var( b̄) 0.0015 0.0064 0.0027 0.0115

Number of rejections (95%) 6 9 2 6

Sample variance of b̄ 0.0018 0.0112 0.0022 0.0126
("normalized" value) - - (0.0014) (0.0081)

Table 10: Monte-Carlo: static model (nrep=100)

and ¯ = 0:1) reaches 10% for the 95% level of signi¯cance. Increasing the

number of individuals in the sample to 1000 brings considerable improvement,

especially in the estimates of the variance of ¯. The number of rejections is very

close to the 5% level, as expected. When u = 0:8 (fourth column) the system is

not directly identi¯ed and the estimates of ¯ must be normalized. The normal-

ization is straightforward. The obtained probit coe±cients are ¼*=¼=u. Hence,

the predicted value of the latent dependent variable based on ¼* is y¤=u. There-

fore, to obtain the correct estimates of ¯'s we have to multiply ¯ by u. In our

experiment the corrected/normalized estimates of ¯'s are ¯=1.2501*0.8=1.0001

(N=1000) and ¯=1.2920*0.8=1.0336 (N=250). \Normalized" values of esti-

mates and variances of estimates are given in the brackets.

The next set of simulations was designed to compare properties of two es-

timators: 1) GMM estimator which uses optimal weighting matrix and, thus,

asymptotically as e±cient as minimum distance estimator, and 2) less e±cient

GMM estimator which is numerically equivalent to the within-groups estimator.
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The results are summarized in Table 11 (N=1000). In addition to the estimates

of ¯ and variance of ¯ the mean and variance of ® estimates are also presented.

The system is identi¯ed at u ¼ 0:85. The reason for this is the additional vari-

ance component in the lagged dependent variable. Finding a precise value of u

at which the system is identi¯ed is complicated by this additional time series

component.

As u decreases from 1 to 0.8, the estimates of ¯ increase from 0.85 for GMM

(0.8806 for WG) to 1.056 (1.1013 for WG), reaching 1.0046 (1.037 for WG) for

u = 0:85. When u = 0:85 the GMM estimator clearly outperforms the WG

estimator. The estimates of ® are also much closer to the true values for the

GMM estimator. The estimates of variances are smaller and closer to the true

values for the GMM estimator. The number of rejections, however, is higher for

the GMM estimator for higher u's (u=1 and u=0.9) and lower for lower u's.

All previous experiments were conducted with 100 repetitions. Undoubt-

edly, it would be desirable to conduct simulations for a much larger number

of repetitions. For N=1000, however, simulations are considerably more time

consuming. Less time is needed for N=250. Table 12 compares the estimation

results for nrep=1000 when N=250.

Comparing the results for N=1000 and N=250 it is clear that estimation re-

sults improve considerably when the sample size increases. Given the asymptotic

properties of the Bover-Arellano estimator this was expected. The comparison

between the WG and GMM estimators also shows that the GMM estimator

produces smaller variances although the number of rejections is approximately

the same.

To summarize the results, it is clear that the Bover-Arellano estimator per-
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® = 0:5; N = 1000; nrep = 100 ¯ = 1;u = 0:85 ¯ = ¡1;u = 0:85

WG GMM WG GMM
Mean estimate of ¯ 1.037 1.0005 -1.005 0.9894
Mean estimate of ® 0.4441 0.4853 0.4993 0.4971

Mean
\
var( b̄) 0.0070 0.0053 0.0045 0.0038

Number of rejections for ¯ (95%) 5 3 5 4

Sample variance of b̄ 0.0056 0050 0.0047 0.0039

¯ = 1;u = 1 ¯ = 1;u = 1:1

Mean estimate of ¯ 0.8876 0.9441 0.7864 0.8466
("normalized" ¯) (0.9862) (1.0490) (0.9616) (1.0347)
Mean estimate of ® 0.4629 0.3593 0.4580 0.3221

Mean
\
var( b̄) 0.0053 0.0226 0.0046 0.0194

Number of rejections (95%) 7 4 9 6

Sample variance of b̄ 0.0046 0.0324 0.0052 0.0225
("normalized" value) (0.0057) (0.040) (0.0078) (0.0336)

¯ = 1;u = 0:8 ¯ = 1;u = 0:7

Mean estimate of ¯ 1.1090 1.1967 1.2638 1.3220
("normalized" ¯) (0.9858) (1.0637) (0.9830) (1.0282)
Mean estimate of ® 0.4513 0.3329 0.4304 0.3397

Mean
\
var( b̄) 0.0077 0.0315 0.0095 0.0397

Number of rejections (95%) 4 4 9 5

Sample variance of b̄ 0.0077 0.0437 0.0089 0.0445
("normalized" value) (0.0061) (0.0345) (0.0054) (0.0269)

Table 11: Monte-Carlo: dynamic model (WG vs. GMM , nrep=100, N=1000)
(nrep=100)
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® = 0:5; N = 250; nrep = 1000 ¯ = 1;u = 0:85 ¯ = ¡1;u = 0:85

WG GMM WG GMM
Mean estimate of ¯ 1.1073 0.9873 -1.053 -0.9782
Mean estimate of ® 0.3390 0.4127 0.4583 0.4581

Mean
\
var( b̄) 0.0287 0.0190 0.0190 0.0143

Number of rejections for ¯ (95%) 93 103 71 74

Sample variance of b̄ 0.0316 0.0263 0.0206 0.0176

¯ = 1;u = 0:8 ¯ = 1;u = 0:9

Mean estimate of ¯ 1.1684 1.029 1.0349 0.9294
("normalized" ¯) (1.0998) (0.9685) (1.0958) (0.9841)
Mean estimate of ® 0.3359 0.4157 0.3472 0.4118

Mean
\
var( b̄) 0.0326 0.0204 0.0265 0.0178

Number of rejections (95%) 110 117 102 115

Sample variance of b̄ 0.0394 0.0310 0.0300 0.0242
("normalized" value) (0.0349) (0.0275) (0.0336) (0.0271)

Table 12: Monte-Carlo: dynamic model (WG vs. GMM, nrep=1000, N=250)

forms very well in the context of a static model. The results are straightforward

and easy to interpret. On the other hand, the estimators obtained in the con-

text of the dynamic model are less reliable and inference is complicated by the

presence of the additional variance component in the lagged dependent variable.

The use of an optimal weighting matrix improves the results, although so the

performance of the WG estimator can be considered satisfactory.

7 Econometric Results

7.1 Static speci¯cation

As mentioned above, SLID does not collect asset information. I used the \in-

vestment incomet" variable as a proxy for household's assets. Another income

variable - \total earningst" - includes wages and salaries as well as government

transfers (social security, old age security pension and Canadian and Quebec

Pension Plan bene¯ts) and private pension bene¯ts. Given that the major-
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ity of the household heads in the sample are retired (about 72% in 1996) and

will depend on the same government transfers and pensions in the future, this

variable and the \investment incomet" variable should give a good idea about

household's permanent income.

There is no information on house prices in the SLID. Here, I also have

to rely on a proxy variable constructed as the ratio of the provincial housing

price index and consumer price index (\hpi/cpit¡1") to capture the e®ect of

housing prices. The vector of demographic variables includes the variables that

may change over time - \household sizet¡1" and \marital statust¡1" as well as

time invariant variables - \age in 1996" and \university degree." Also included

are \dwelling tenuret¡1" and a dummy variable indicating poor health (\poor

healtht").

coef std. err. z P>jzj
total earnings 0.003 0.022 0.15 0.878
investment income -0.014 0.018 -0.8 0.422
hpi/cpi (t-1) -0.563 0.392 -1.43 0.152
tenure (t-1) -0.585 0.056 -10.52 0.000
urban/rural (t-1) 0.145 0.064 2.26 0.024
household size (t-1) 0.087 0.037 2.37 0.018
marital status -0.208 0.064 -3.25 0.001
poor health 0.198 0.084 2.37 0.018
*age in 1996 -0.006 0.003 -1.70 0.089
*university degree 0.181 0.094 1.92 0.054

"rho" (fraction of variance due to ´i) 0.159 0.035

Table 13: Random E®ects Model (uncorrelated individual e®ects)

The results from a benchmark random e®ects model in which individual

e®ects are uncorrelated with explanatory variables are presented in Table 13.

As with any probit model, only the ratios of the coe±cients and standard errors

of the residuals can be identi¯ed. Urban and larger size households appear
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to be more likely to change residence, as do households in which the major

income earner is in poor health. Higher mobility of those in poor health is

consistent with previous ¯ndings for British households. Ermisch and Jenkins

[1999] ¯nd, based on data from the British Household Panel Survey, that people

with health problems are more likely to move. I also tried a speci¯cation that

includes changes in health status. Similar to Ermisch and Jenkins [1999] I

found no association between changes in health status and mobility. Owning the

residence and being married is negatively related to mobility. Income variables

are not individually signi¯cant and neither is provincial hpi/cpi ratio.

It is possible to test whether the panel estimator is di®erent from an estima-

tor that may be obtained from a pooled regression by testing the signi¯cance of

the panel-level variance component. The null of no panel e®ect is rejected by

the likelihood ratio test (Â2 = 22:9).

The next model relaxes the assumption that individual e®ects are uncor-

related with the explanatory variables and uses the two-step Bover-Arellano

estimator for a static model with and without heteroskedasticity. The esti-

mated matrix of the reduced form coe±cients and the covariance matrix from

the ¯rst stage are used to predict the values of the latent dependent variable

and estimate the coe±cients from a linear ¯xed e®ects model (within-groups)

on the second stage. A particular challenge is to ¯nd a good ¯t for the reduced

form probit speci¯cation on the ¯rst stage. I have tried several di®erent spec-

i¯cations. Following Chamberlain [1984] I assume a linear parametrization for

individual e®ects, which includes lags and leads of all exogenous variables as well

as a vector of time-invariant dummy variables such as age in 1996, university

degree, sex of head, visible minority and a dummy variable indicating whether
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the person ever had or raised a child. The goodness-of-¯t for the reduced form

probit varies considerably for each period. For example, the pseudo-R2 for the

¯rst period probit is about twice the pseudo-R2 for the fourth period. The in-

clusion of quadratic and cubic terms has not resulted in signi¯cant changes in

the log-likelihood. Part of the problem may be attributed to the measurement

error in the dependent variable (\number of moves"). As mentioned above, the

variable indicates only whether the household moved at least once during the

year but does not record the actual number of moves. The measurement error

is absorbed in the error term, which inevitably reduces the \goodness-of-¯t."

coef std. err. z P>jzj
total earnings /10000 0.088 0.085 1.04 0.298
investment income/10000 -0.016 0.029 -0.56 0.287
hpi/cpi (t-1) 0.273 0.999 0.27 0.787
tenure (t-1) 0.180 0.190 0.95 0.342
urban/rural (t-1) 0.573 0.274 2.09 0.037
household size (t-1) 0.007 0.084 0.08 0.936
marital status 0.048 0.245 0.20 0.841
poor health 0.128 0.118 1.08 0.280

Table 14: Bover-Arellano estimator (static model, no heteroskedasticity)

Table 14 presents the results from a static model that assumes no het-

eroskedasticity. Only the \urban/ruralt¡1" variable is signi¯cant at the 95%

level and the e®ect of the variable appears to be stronger. Generally, the vari-

ance estimates of the coe±cients seem to be larger than in the random e®ects

model.

The within-groups estimators of ¯ for a static model with heteroskedasticity

can be obtained based on reduced form model estimates of ¼¤
t , such that

Pr(yit = 1jzi) = ©(¼¤0
t zi);

where ¼¤
t = ¼t=¾t and ¾1 = 1: The results presented in Table 15 are very
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similar to the results from the previous model. The model also allows one to

estimate the variances of residuals in each period assuming that the ¯rst year

variance is normalized to 1. The estimates of standard errors are 0.951, 0.942

and 0.967 for the second, third and fourth period respectively. The joint F-test

of ¾2 = ¾3 = ¾4 = 1 rejects the null.

coef std. err. z P>jzj
total earnings/10000 0.080 0.079 1.01 0.314
investment income/10000 -0.018 0.028 -0.63 0.529
hpi/cpi (t-1) -0.361 1.075 -0.34 0.734
tenure (t-1) 0.177 0.186 0.96 0.337
urban/rural (t-1) 0.553 0.268 2.07 0.038
household size (t-1) 0.008 0.082 0.10 0.920
marital status 0.026 0.239 0.11 0.912
poor health 0.132 0.114 1.16 0.246

Table 15: Bover-Arellano estimator (static model with heteroskedasticity)

Urban households appear to be more mobile, perhaps because they have

more housing choices than rural households. Their separation costs are probably

also lower since rural households often have deeper roots in the community, are

more attached to ancestral land, and have fewer job opportunities.

The estimated e®ects of some variables on residential mobility decisions are

quite di®erent for owners and non-owners. Table 16 shows the results separately

for owners and non-owners. All three models produce similar results with respect

to the relationship between owner's mobility and health status. Poor health

appear to be an important determinant of the housing decisions of the elderly

owners. The estimated e®ect of marital status is very similar in all three models

although it is signi¯cant only in the random e®ects model in which individual

e®ects are assumed to be uncorrelated with the regressors. Urban non-owners

appear to be more mobile than rural non-owners although the results are not
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robust to di®erent model speci¯cations.

owners non-owners
coef. st. err. coef. st. err.

Random e®ects model

total earnings/10000 -0.020 0.028 0.054 0.040
investment income/10000 -0.009 0.022 -0.033 0.035
hpi/cpi (t-1) -0.832 0.522 -0.350 0.660
urban/rural (t-1) 0.143 0.079 0.234 0.131
household size (t-1) 0.077 0.047 0.126 0.071
marital status -0.385 0.084 0.109 0.110
poor health 0.263 0.124 0.134 0.118
*age in 1996 0.001 0.005 -0.016 0.005
*university degree 0.117 0.125 0.413 0.166

Bover-Arellano estimator (no heteroskedasticity)

total earnings/10000 0.007 0.121 0.075 0.170
investment income/10000 -0.026 0.031 -0.180 0.113
hpi/cpi (t-1) -0.292 1.235 2.522 1.717
urban/rural (t-1) 0.029 0.370 1.257 0.388
household size (t-1) 0.117 0.108 -0.250 0.153
marital status -0.382 0.332 0.366 0.362
poor health 0.315 0.141 -0.003 0.178

Bover-Arellano estimator (with heteroskedasticity)

total earnings/10000 0.009 0.113 -0.034 0.117
investment income/10000 -0.026 0.031 -0.125 0.067
hpi/cpi (t-1) -0.155 1.298 -2.954 1.361
urban/rural (t-1) 0.021 0.367 0.682 0.319
household size (t-1) 0.115 0.109 -0.083 0.106
marital status -0.382 0.326 0.121 0.254
poor health 0.317 0.139 -0.004 0.122

Table 16: Owners vs. Renters

I now turn to the dynamic speci¯cation.

7.2 Dynamic Speci¯cation

Table 17 presents the results of the dynamic model with non-optimal weighting

matrix. The coe±cient on hpi/cpit¡1 is now positive and signi¯cant. The only

other signi¯cant variable is \household sizet¡1:" An optimal weighting matrix

in the GMM model produces more signi¯cant variables (Table 18).
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coef std. err. z P>jzj
by¤
t¡1 -0.156 0.103 -1.515 0.607

total earnings/10000 0.001 0.093 0.012 0.990
investment income/10000 0.030 0.032 0.947 0.343
hpi/cpi (t-1) 2.721 1.321 2.060 0.039
tenure (t-1) -0.462 0.355 -1.301 0.193
urban/rural (t-1) 0.560 0.394 1.421 0.155
household size (t-1) 0.331 0.143 2.315 0.021
marital status 0.171 0.344 0.497 0.619
poor health 0.068 0.138 0.492 0.623

Table 17: Bover-Arellano estimator (dynamic model)

The lagged dependent latent variable is signi¯cant and negative. Somewhat

surprisingly the \total earnings" variable is signi¯cant on the 95% level and

positive, while the \investment income" variable - a proxy for household's assets

- is not signi¯cant and negative. This result, however, is in line with Merrill

[1984] who observed a similar relationship between housing assets and mobility.

The e®ect of changes in the hpi/cpit¡1 ratio appears to be much stronger than in

the static models. The \urban/ruralt¡1" variable is on the border of signi¯cance.

The \household sizet¡1" variable is signi¯cant on the 90% level and negative.

coef std. err. z P>jzj
by¤
t¡1 -0.278 0.082 -3.390 0.001

total earnings/10000 0.131 0.057 2.298 0.021
investment income/10000 -0.037 0.025 -1.502 0.133
hpi/cpi (t-1) 3.856 1.197 3.221 0.001
tenure (t-1) -0.391 0.301 -1.299 0.194
urban/rural (t-1) 0.628 0.329 1.909 0.056
household size (t-1) -0.231 0.125 -1.848 0.064
marital status -0.195 0.301 -0.647 0.517
poor health 0.024 0.119 0.202 0.840

Table 18: Bover-Arellano estimator (GMM model)

The signi¯cance and the sign of the lagged dependent variable suggest that

if the net bene¯t of moving in the previous period is increasing, the likelihood of

42



moving in period t is decreasing. An obvious explanation for this result is that

if the net bene¯t of moving in period t ¡ 1 is high then the household is most

likely to adjust its housing in that period. Once the adjustment took place, the

net bene¯t of staying is higher.

WG
owners non-owners
coef. st. err. coef. st. err.

by¤
t¡1 -0.033 0.109 -0.340 0.100

total earnings/10000 0.043 0.132 0.364 0.207
investment income/10000 0.038 0.032 -0.196 0.100
hpi/cpi (t-1) 2.335 1.582 3.683 2.508
urban/rural (t-1) 0.360 0.501 1.052 0.409
household size (t-1) -0.131 0.190 -0.856 0.227
marital status -0.060 0.535 0.250 0.416
poor health 0.053 0.175 0.131 0.208

Table 19: Bover-Arellano estimator: Owners vs. Renters(WG)

GMM
owners non-owners
coef. st.err. coef. st. err.

by¤
t¡1 -0.242 0.086 -0.263 0.057

total earnings/10000 0.660 0.559 0.319 0.162
investment income/10000 -0.008 0.021 -0.077 0.059
hpi/cpi (t-1) 2.997 1.341 1.376 2.059
urban/rural (t-1) 0.846 0.403 0.320 0.236
household size (t-1) -0.021 0.121 -0.798 0.185
marital status -0.334 0.447 -0.150 0.309
poor health 0.013 0.134 0.016 0.155

Table 20: Bover-Arellano estimator: Owners vs. Renters (GMM)

Tables 19 and 20 show estimation results separately for owners and non-

owners. Clearly, it appears that the mobility of owners and non-owners is af-

fected very di®erently by di®erent variables. While the e®ects of `hpi/cpit¡1'

and `urban/ruralt¡1' are signi¯cant for owners, they are not signi¯cant for non-

owners (GMM model). The opposite is true for `household sizet¡1'. These
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results have an intuitive appeal. A priori, we would expect that the e®ect of

housing price changes is more important for those with housing wealth (own-

ers) than for those without (non-owners). It appears that owners' mobility is

encouraged by higher house prices, which contradicts the results of the static

model and the ¯nding by Ermisch and Jenkins [1999] who observed that older

owners are discouraged by tighter housing markets.

The mobility costs (including separation costs) for rural owners are expected

to be higher than for urban owners, but a rural renter is hardly more attached

to his dwelling than an urban one. The estimates are signi¯cant for owners

but not for non-owners. Non-owners, on the other hand, appear to be more

sensitive to the changes in household size. The relationship between \household

sizet¡1" and mobility in both WG and GMM models is negative, which is in

line with the previous observation that the moving costs for non-owners living

alone are probably lower that for any other category. With respect to the ques-

tion of whether the elderly use housing wealth for general consumption, there

is little evidence to support that hypothesis. A positive association between

\total earningst" and mobility is signi¯cant for non-owners but not for owners,

while asset holding does not appear to have strong e®ect on mobility for either

group. The model can be tested for overidentifying restrictions. The null of no

overidentifying restrictions is not rejected at the 95% level.

8 Conclusions

As Deaton [1997] points out, \attempts to disentangle heterogeneity, on one

hand, and dynamics, on the other hand, have a long and di±cult history in

various branches of statistics and econometrics" (p.111). In this paper, I present
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an attempt to deal with both issues in a study of the residential mobility of

the elderly in Canada by employing the Bover-Arellano [1997] estimator for

panel data in both static and dynamic frameworks. Although compositionally

straightforward, the method appears to be very sensitive to ¯nding a good ¯t for

the latent variable (the net bene¯t of moving in this case). The limitations of the

data provide an additional constraint. Future analysis will bene¯t from more

detailed data on the number of moves during a particular year and information

on household assets, mortgage payments and house prices.

The random e®ects approach used in this study provides a °exible framework

that can be improved in several directions. In particular, it may be possible to

relax the assumption of the linear speci¯cation of individual e®ects and general-

ize the model to a non-parametric speci¯cation of individual e®ects. Some steps

in this direction have already been made (Newey [1994]; see Arellano [2000] for

a detailed overview of recent contributions in the ¯eld).

With respect to the lifecycle aspect of housing decisions, there is some ev-

idence that household income and wealth may play a role in housing mobility

decisions although the link does not appear to be strong. I also ¯nd higher tran-

sition rates from non-ownership to ownership than vice versa. The results of the

dynamic model (GMM estimator) suggest that mobility consideration are quite

di®erent for owners and non-owners. It appears, however, that mobility for both

groups is mostly related to transaction costs. Those for whom transaction costs

are lower are more likely to adjust their housing. Once the adjustment took

place future mobility is less likely. The role of the transaction cost is consistent

with \richer" versions of the lifecycle theory and can be further explored in a

study of \reverse mortgages," an arrangement o®ered by banks and government
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agencies under which a bank or an agency purchases the home and pays to the

family that continues to live in it.

The results must be considered with caution. First, the SLID does not

provide information on the actual number of moves during a given year, only

whether the person has moved at least once. In addition, relying on proxy

variables for household assets and house prices reduces the precision of the esti-

mates. Second, the two(three)-stage Bover-Arellano panel data estimator used

in this study assumes a particular speci¯cation of the conditional distribution

of individual e®ects. This assumption is restrictive (Chamberlain [1984]) and

can be relaxed. Finally, both Monte-Carlo simulation and estimation con¯rm

that the results are not very robust when both individual heterogeneity and

dynamics are present in the model.
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