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ABSTRACT

Methods for time series modeling of mortality and stochastic forecasting of life
expectancies are explored, using Canadian data. Consideration is given first to
alternative indexes of aggregate mortality. Age-sex group system models are then
estimated. Issues in the forecasting of life expectancies are discussed and their
quantitative implications investigated. Experimental stochastic forecasts are
presented and discussed, based on nonparametric, partially parametric, and fully
parametric methods, representing alternatives to the well known Lee-Carter
method. Some thoughts are offered on the interpretation of historical data in
generating future probability distributions, and on the treatment of demographic
uncertainty in long-run policy planning.

* The work underlying this paper was carried out as part of the SEDAP (Social
and Economic Dimensions of an Aging Population) Research Program supported by
the Social Sciences and Humanities Research Council of Canada, Statistics Canada
and the Canadian Institute for Health Information.



1. INTRODUCTION

This paper is an exploratory study in the time series modeling of mortality rates and the
stochastic forecasting of life expectancies. Stochastic demographic forecasting was pioneered
and developed by Ronald Lee and his associates (Lee, 1992, Lee and Carter, 1992, Lee and
Tuljapurkar, 1994, to note three of the earliest papers; Lee, 2000, Lee and Miller, 2000, to note
two recent ones). Our forecasting explorations fall into that general area, and we (like anyone
else working in the area) owe a large debt to its originators. The Lee-Carter approach, as it has
been called, provides a particular, interesting way of using historical mortality data to estimate
probability distributions of future life expectancies. It has attracted considerable attention and has
had various applications in stochastic forecasts for the U.S. and other countries. (See Lee and
Miller, 2000, for a review of comments on the approach and refinements of it, and an assessment
of its accuracy by means of ex post and simulated ex ante forecasting.) However, in the interest
of exploring alternatives we take a different approach in this paper — indeed, a number of
different approaches. Working with Canadian time series we investigate several other methods
of introducing probabilistic elements into the modeling of mortality and the quantification of
uncertainty about future life expectancies. Our aim is not primarily to produce predictions for
Canada, although that is the form that the numerical product of our work takes. Rather it is to
investigate possible ways of making predictions, whether for Canada or other countries or
regions. It is essentially an investigation of competing techniques and assumptions. Working
with Canadian data is convenient for us but we hope that our results and discussion will be of
interest to persons concerned more generally with mortality modeling and stochastic forecasting.

Our principal data base is a set of annual age-sex group mortality rates for the 71-year

period 1926 to 1996, based on numbers of deaths and population figures from various Statistics



Canada sources. (The population figures were adjusted to place them at July 1 in each year and to
make them as consistent as possible with current Statistics Canada definitions.) The set includes
rates for males and females in 19 age categories: under 1, 1-4, and then by 5-year groups up to
80-84, plus an open ended group, 85 and over. There are thus 38 age-sex groups, and 2698
observations in total. We analyse the time series behaviour of the rates and use the data and
analysis as a basis for the subsequent forecasts of life expectancies. The forecasts are made
within an overall period framework, as opposed to a cohort framework. A cohort framework
might well be preferable but would introduce complexities that we have thought it best to avoid,
at least for the present. In that regard our study is similar to others.

A sketch of the paper is as follows. We begin at the aggregate level by constructing
overall summary measures of mortality. We have experimented with a range of alternative index
formulas familiar in economics in the context of price/quantity index theory, and in some cases
also in demography. The calculated indexes are all generally similar in their time series patterns
and we have selected four of them for presentation, discussion, and modeling. (In logarithmic
form the indexes provide information about long-run trends similar to that provided by the first
singular value series extracted by the matrix decomposition procedure used in the Lee-Carter
approach to stochastic forecasting.)

We turn next to an examination of the time series patterns of the age group rates. We
present two alternative system models of those rates, and then consider some issues in
forecasting — in particular the future lengthening of the life span, lower bounds on mortality rates
and the possible long-run slowing of the rates of decline, and the related issue of the
“rectangularization” of the survival function. We explore the implications of how those issues are

dealt with by presenting a range of nonstochastic forecasts of life expectancies based on different



assumptions about oldest surviving age and changes in long-run trajectories. We then move on to
stochastic forecasting. The stochastic procedures include nonparametric bootstrap methods,
partially parametric methods in which a time series system model is coupled with bootstrap
procedures for generating random variation, and a strictly parametric method in which the
random variation is generated by drawing disturbances from a multivariate normal distribution.
The forecasts are interpreted, and in a final section the problems and issues in stochastic

forecasting are reviewed and some additional thoughts offered.

2. INDEX FORMULAS AND HISTORICAL REGULARITY AT THE AGGREGATE LEVEL

Index-type calculations have a long history in demography, often under the heading of
“standardization” (Kitagawa, 1964, 1966, Shryock and Siegel, 1980, Keyfitz, 1985, Chapter 3, to
take some examples from the literature). But the history in economic statistics is longer, dating
from known applications in the construction of price indexes as far back as the 18" century
(Diewert, 1987). Numerous formulas have been suggested for calculating indexes of the “general
price level” and its quantity level counterpart, and the transference to mortality indexes is
straightforward: age-sex group ( x ) replaces commodity, number of deaths ( D ) replaces

expenditure, population ( V') replaces quantity, and mortality rate (72 ) replaces price. The

simple identity D = m_N_ then holds, and the stage is set for application of any of the

available index formulas.
We have experimented with a range of mortality indexes, including arithmetic indexes
with fixed population weights (based on various actual or stationary life table populations),

“current weighted” or Paasche indexes, indexes with geometric population weights, Fisher’s



“ideal” index and the Toérnqvist index (various forms in both cases), and a Divisia index.
(General treatments of index formulas can be found in Banerjee, 1975, and Diewert, 1987.) All
of the indexes display roughly the same time series patterns and from the larger set we have
chosen four for presentation here. The four include three of the arithmetic indexes with fixed
population weights — weights based on actual populations in 1931, 1966, and 1991, which cover
the pre-baby-boom, immediate post-baby-boom, and advanced baby-bust periods, with their
markedly different age distributions. The fourth is the Divisia index, representing a discrete
approximation to a theoretically continuous chain index. The four indexes are plotted as
logarithmic time series in Figure 1 for the period 1926 to 1996, along with the first differences of
the logarithms. The fixed weight arithmetic indexes are labeled fwaP31, fwaP66, and fwaP91 in
the figure; the Divisia index is labeled div. In explicit form, the formula for the fixed weight

indexes can be written as

() M, = Z ”xomx[/ Z oMy

where n, is the proportion of the population in age-sex group x in year t and year 0 is a chosen

base year; the formula for the Divisia index can be written as

Oe [
2 M, = expgz wa’s_lA lnmxsg
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wherew = D_ /D, , D, being the total number of deaths in year s, all age-sex groups

combined. Note that the formula for the fixed-weight index in equation (1) can be converted to



an equivalent form that also uses w weights:

G M, =Y w(m, Im,)

All four of the log indexes show long-run downward paths that are roughly linear over the
seven decades and constitute the dominant time series pattern; in each case a simple linear trend
function fitted to the log series accounts for over 99 percent of the total variation. The
consistency of the trends might be thought remarkable, given all of the developments that have
occurred over the seven decades in the science and practice of medicine, in health care and
illness prevention more broadly defined, and in the socioeconomic circumstances of the
population. (Why should the history of such developments have produced such a regular pattern
of decline over such a long period?) However, the trends are consistent with those that have been
found in studies employing the Lee-Carter singular value decomposition method; the time series
corresponding to the first singular values identified in those studies show similar such trends in
the United States and a number of other countries. Tuljapurkar, Li, and Boe (2000) analysed
mortality data for the G7 countries using the Lee-Carter method and reported that the first
singular value accounted for about 96 percent of the total variation of the matrix of age-sex log
mortality rates in Canada, and from 94 to 97 percent in the other six countries. (For another
application of the Lee-Carter method to Canadian data, with similar results, see Lee and Nault,
1993.) The first singular value series in the Tuljapurkar et al. study correspond essentially to
long-run trends, and plots of those series show the same predominantly linear time paths for all
countries as our indexes do for Canada. Against that background, the long-run time series

pattern of our indexes is not so surprising.



The short-run fluctuations of the mortality indexes are represented by the annual first
differences plotted in Figure 1. A first glance suggests negative autocorrelation, and that is
confirmed by the subsequent fitting of autoregressive models. It is apparent too that there was a
shift in the degree of volatility around 1946: the earlier fluctuations are more pronounced than
the later ones. The fluctuations of the four series of log differences are quite similar, as one might

expect.

3. TIME SERIES MODELS OF THE AGGREGATE INDEXES

Estimates of three alternative models of the indexes are provided in Table 1. (These
models and others in the paper were estimated using SHAZAM, Version 9; see SHAZAM,
2001.) The models are autoregressive in the log first differences — AR(0), AR(1), and AR(2)
models. Equivalently, the AR(1) and AR(2) models can be thought of as ARIMA(1,1,0) and
ARIMA(2,1,0) models of the undifferenced log series, and the AR(0) one as a random walk
model. The models were estimated by a generalized least squares procedure to allow for the
apparent downward shift in error variance starting about 1946. (Variances for the period prior to
1946 and the period 1946 and after were estimated from ordinary least squares residuals, and
then used in a second stage to construct a modified covariance matrix for implementation of the
GLS procedure.) There is little to choose among the models. The autocorrelation evident in the
plots of the log difference series manifests itself now in negative first-lag coefficients in all four.
The differences in the standard errors of estimate (S) are small. The Akaike Information and
Schwartz Criterion statistics (not shown in the table) give an edge to the AR(1) model, but again
the differences are slight. Our choice for any further work with an aggregate model is AR(1), and

our index of choice is the 1991 fixed weight index (fwaP91), but both choices are by narrow



margins.

4. TRENDS AND FLUCTUATIONS AT A DISAGGREGATED LEVEL

We leave the aggregate indexes behind now and go down to the level of the 38 individual
age-sex groups. The first differences of the logarithms of the group mortality rates are plotted in
Figure 2. The plots suggest negative autocorrelation at the group level, as they did at the
aggregate level, and again that is confirmed by subsequent formal modeling. Also they indicate
an age pattern in the degree of short-term volatility: the extent of annual fluctuations is most
pronounced among children and teenage groups, falls off during the younger adult and middle
age years, and is least pronounced in the older age groups. That pattern is confirmed by the
model-based residual variances. Finally, the average proportionate decline (mean log first
difference) in mortality rates over the period 1926 to 1996 also falls off with age; that can be seen

in the plots, but more clearly in calculations provided below.

5. DISAGGREGATED TIME SERIES MODELS

We have experimented with different time series models of the first differences of the log
mortality rates at the age-sex group level, including an AR(1), an AR(2), and what we refer to as
a “quasi-vector autoregressive” (QVAR) model. Standard criteria give an edge to the AR(2) over
AR(1) model, and we therefore choose it for presentation, along with the QVAR model. The two
selected models are displayed in Tables 2 and 3.

The 38 equations of each model were estimated as a system, using an iterated form of the
seemingly unrelated regression estimator (SURE) to allow for cross-equation error correlations.

(Convergence required 69 iterations with the AR(2) model, 34 with the QVAR model.) We refer



to the two models as system models because of the simultaneous estimation procedure employed
to estimate their equations in each case, and because we had in mind treating them as systems in
using them to generate stochastic forecasts. As it turned out, we chose the AR(2) system and
used it exclusively for the model-based forecasts presented below. However, we present both
systems as viable modeling alternatives.

The AR(2) system equations in the log first differences (or equivalently, ARIMA(2,1,0)

in the undifferenced logs) are of the form

(x0X)

Xt

(4) A lnmxt = BOx + ﬁle lnmx,t—l + BZxA lnmx,t—Z tE

where X denotes the set of 38 age-sex groups and € is a white noise error. In theory an

alternative model that would capture both the short-run and intergroup dynamics of mortality
rates is a vector autoregressive model (VAR) in which the lagged rates for all groups appear in
all of the equations. But of course without severe restriction the estimation of such a model is
infeasible with anything like the length of time series that would be available. Our practical
approximation is a “quasi” version of a VAR model — a QVAR model, as we label it — in which
the equations include an own-lagged variable plus a variable that is a function of all the other
variables, in lagged form. Our choice for that function is an aggregate index, M , represented by
the fwaP91 index of section 2. ( M in fact includes the mortality rate for the individual age-sex
group whose log differences are being modeled in any particular equation, as well as the other
37 rates. But that is inconsequential, and allows the same index variable to be used in all

equations.) The resulting system that we considered as an alternative to the AR(2) system is a

QVAR(1), of the form

(5) Alnmxt = yOx + yle 1nn/lx,t—l + y2)cA ln Mt—l + rl*t (x DX)



where the white noise errors are now represented by 1] .

Both models have system R? values in excess of 0.99 (see Berndt, 1991, for definition)

but that should be discounted rather heavily; it is known that the system R? formula can produce

very high values, which ought to be interpreted with caution (SHAZAM, 2001). Nevertheless
both models seem to perform reasonably well. The t statistics (interpreted as asymptotic normal
statistics because of the method of estimation) are generally high in the AR(2) model — greater
than 2.0 in all but one case out of 38 for the one-period lag coefficients, and in all but eight for
the two-period lag coefficients. The AR(2) model performs somewhat better than the QVAR(1)
model by that criterion, but an equation-by-equation comparison of the standard errors of
estimate yields 28 cases out of 38 in which the QVAR(1) model performs better, though usually
by only a small margin. The equations of both models are stochastically stable (stationary). On

balance there seems to be little to choose between the two models, and the overall system
R? measures provide no basis for discrimination. The AR(2) model is a little more convenient to

work with for stochastic forecasting purposes, and that is therefore our choice for the
experiments presented below. Whichever model one looks at, though, the negative

autocorrelation of the log differences stands out clearly: in the AR(2) model the coefficient of

Alnm,,_ isnegative in 37 of the 38 equations; in the QVAR(1) model it is negative in 36 of

the 38.

The steady state rate of change of an age-sex group mortality rate can be calculated easily

for the AR(2) model by setting Alnm,, =Alnm,_,_, =Alnm ,, =Alnm and €, = 0.
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Letting O be the steady state rate, 0 = 3, / (1 -B,. - :Bzx)- The a values for the model are

shown in Table 4, together with the means of the A In m series over the period 1926 to 1996.
The two sets of values are close, as one would expect. For age groups 10-14 and older the rates
of decline, by both measures, are greater for females than for males. The long-run proportionate
rate of decline is seen generally to fall off with age, by both measures, and for adult ages that
means that it falls off as the mortality rate itself increases. (Mean A Inm andInm are plotted
together in Figure 3 for males and females, by age group.) We make use of the & values in one

of the stochastic forecasting experiments by randomizing their assignment to age-sex groups to
allow for possible distributional shifts in the effects of future medical advances or other

mortality-reducing developments.

6. ISSUES IN THE FORECASTING OF MORTALITY RATES AND LIFE EXPECTANCIES

A general (and totally obvious) principle in forecasting is that one looks for past
regularities as a guide to the prediction of future events. The regularities we have focused on are
the fact of continuous decline of mortality in every age-sex group, and beyond that the actual
patterns of decline over seven decades, at both the aggregate and group levels. Continuous
decline of mortality is by no means a law of nature; mortality rates could in fact go up, and that
of course has happened in some countries in some periods. A widespread major epidemic could
cause at least a temporary reversal and continuous degradation of the environment could have
longer-run effects, to say nothing of wars and sudden natural disasters. But a common though
implicit assumption in demographic forecasting is that such reversals will not occur over the

period of the forecast, so let us make that assumption, and consider how to make use of the
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observed past regularities. For experimental purposes we are interested here in forecasts that
extend a long way into the future — as far as the year 2100, in fact, with some stops in between —
so the question is how much reliance can we put on past behaviour in looking that far ahead. We
do not want to rely on the simple maintenance of past average rates of change; that would ignore
the obvious and important role of uncertainty, negate any interest in stochastic forecasting, and
rob this paper of its reason for existence. However, even in stochastic forecasting the question
arises as to whether the distribution of past rates of change can be viewed as a stable probability
distribution for the purpose of making probabilistic statements about the future of mortality and
life expectancies. To put it more sharply, can the mean of the distribution (or some other location
parameter) be assumed fixed, even though we cannot know just where in the distribution the
future will actually lie?

Suppose that we do assume the mean to be fixed, if we are doing stochastic forecasting,
or more simply that observed average rates of decline over some period will continue, if we are
doing nonstochastic forecasting. (Not that nonstochastic forecasters need to make such an
assumption; they can make judgemental choices, of course.) The problem then is that mortality
rates at all ages will approach zero asymptotically, either as probability limits in the one case, or
as strict limits in the other — and if we hold fixed the oldest life table age (more on that shortly)
the survival function will approach a rectangular shape. The prospect of an ultimate situation in
which everyone survives to, say, 106 (the oldest age in the 1991 Canadian life table), and then
everyone dies in one year, is not appealing on grounds of realism, so something has to give. The
oldest age can be increased, but even then it would seem reasonable to stipulate lower bounds on
mortality at every age. Even at younger ages, where mortality rates are very low, one would

suppose that there would always be deaths by misadventure, if not disease, and that there should
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be some bounds. But placing lower bounds on mortality rates means that the regularities
observed in the historical patterns of decline of those rates cannot continue forever. Sooner or
later the pace of decline must be reduced (unless one believes in an ultimate perfectly rectangular
survival function). For the mortality forecaster the question then is “how soon is sooner?”, or
more specifically, “does it fall within my forecast period?”.

Let us turn to the issue of the lengthening of the life span, or in life table terms the
increase in the oldest age at which there are any survivors. The issue has become a hot one, a fact
publicized by the recent announcement of a bet between the biodemographer Jay Olshansky and
the zoologist Steven Austad. Austad bet that in the year 2150 someone now living will still be
alive, at the age of 150; Olshansky bet that that would not happen, arguing that 130 is the longest
attainable life span. The bet was $150, which with compound interest was predicted to be worth
half a million by 2150 (in the dollars of 2150, one presumes, not constant dollars), payable to the
winner’s heirs (Globe and Mail, 2001, University of Idaho, 2001). On a more academic level, a
recent special issue of the journal Population contains twelve articles on “biodemographic
perspectives on human longevity” which collectively demonstrate the vitality of the research and
debate that is going on. (Vaupel, 2001, provides a summary of the current state of knowledge and
opinion on the subject, and an overview of the articles in the special issue. Also, see Olshansky,
Carnes, and Butler, 2001, for an interesting article on the aging of the human body and the
problems that have to be overcome if the life span is to be lengthened.) We have nothing to
contribute to the debate about longevity but we cannot avoid considering its implications for the
forecasting of mortality and life expectancies, stochastic or otherwise.

There is no point in pretending that for our purposes we can reach a convincing decision

on either the question of when mortality declines will taper off, or the questions of how much the

13



life span will lengthen, and how fast. The jury is going to be out on those questions for a very
long time, one would think. What we can do — the best we can do — is to make different
assumptions and explore their numerical implications for forecasts. We do that in a nonstochastic

setting before turning our attention to alternative methods of stochastic forecasting.

7. SOME EXPLORATORY NONSTOCHASTIC FORECASTS

We present in Table 5 alternative forecasts of mean and median life expectancies to 2050

and 2100. The forecasts are obtained by applying rates of change in group mortality rates

(A Inm) to the single-age rates in the 1991 male and female life tables. The group rates are
treated as step functions for this purpose: the A Inm value for the 50-54 age group is assumed to

apply to all life table ages between exact age 50 and exact age 55, for example; the A Inm value

for 85+ is assumed to apply to exact age 85 and all older ages. Thus the age structures of the
1991 life table mortality rates and survival functions are preserved as starting points for the
forecasts. Separate forecasts of male and female survival functions are calculated, but to reduce
the detail for presentation the two are combined to form a “unisex” function and the life
expectancies in Table 5 are derived from that. (The combination of the male and female
functions is based on the 1986-1995 average Canadian male/female birth ratio of 1.05377.)
Nonstochastic forecasts are presented for combinations of three scenarios for the tapering
off of the rates of decline of mortality rates and five for the lengthening of the life span. There are

thus fifteen combinations in total. The tapering off scenarios are as follows: (a) none, meaning
that A In m remains equal to its average1926-1996 value in every age-sex group throughout the

whole of the forecast period; (b) rates of decline are reduced to half the 1926-1996 mean values

14



by 2100, with A Inm values for other years calculated by linear interpolation; and (¢) rates of

decline are reduced to zero by 2100 (again with linear interpolation). The maximum life span
scenarios assume an oldest age of 106 throughout the forecast period (as noted, 106 is the oldest
age in the 1991 life tables), and alternatively oldest ages of 110, 120, 130, and 140, to be attained
by the year 2100. The oldest ages for years between 1991 and 2100 are calculated as the integer
values of linearly interpolated ages (an interpolated value of 115.7 would yield a maximum age
of 115, for example).

It is of some importance to understand how mortality rates at the oldest ages are treated.
Initially the oldest age is 106 for all scenario combinations, the life table rate of mortality at that
age is obviously 1.0, and the mortality rates for ages beyond that are undefined. Age 106 retains a
mortality rate of 1.0 as long as it continues to be the oldest age. However, if the oldest age rises
at some point in the forecast period to 107, the mortality rate for 107 becomes 1.0 and the
mortality rate at age 106 is treated thereafter like the rates for all other ages 85 and over; that is to
say it is reduced in accordance with the forecast 85+ values of A Inm . This treatment preserves
the necessary inflexibility of the assumed mortality rate at the oldest age but respects the
requirement that mortality rates at all ages short of the oldest be allowed to decline. Any
awkwardness in the treatment is an unavoidable consequence of a truncated rather than
continuous survival function in the conventional life table framework.

Let us look then at the forecasts in Table 5, keeping in mind that they are for the sole
purpose of exploring the effects on life expectancies of altering the assumptions about long-term

changes in rates of mortality decline and length of life span. Mean and median expectancies are

shown for ages 0, 65, and 80 in the years 2000, 2050, and 2100, for each of the fifteen
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combinations of assumptions. The first point to note is that changes in life span, considered in
isolation, have negligible effects, even at age 80 (where the effects would be expected to be
greatest), and even as far out as 2100. The largest effect on the age 80 mean life expectancy in
the table is a difference of 0.14 years (13.81 compared with 13.95) in moving from a forecast that
assumes a maximum age in 2100 of 106 to one that assumes a maximum of 140, under the
assumption in both cases that the 1926-1996 rates of change in mortality rates will continue. The
largest effect on the age 0 expectancy in 2100 is 0.11 years. For 2050 the differences are much
smaller: the largest difference anywhere in the table at any of the three ages is 2/100 of a year,
again holding the rate of decline assumption constant. Even though the age span is allowed to
lengthen considerably over the century or half-century there are just not enough survivors in the
extended age interval to have a significant effect on the means. As for the medians, they are not
affected at all: the median age is the age at which the survivor count is equal to half of the initial
population, and that depends only on the mortality rates at younger ages. The sizes of the effects
on the means are of course a product of the way in which we have treated mortality rates at the
oldest ages, as described above. We think that what we have done is as reasonable a choice as
one could make but other choices may be possible. Nevertheless the insensitivity of mean
expectancies to even large increases in life span suggests to us that assumptions about the
maximum age are well down on the list of things to worry about in making life expectancy
forecasts.

The effects of assuming a long-term slowing of the rates of mortality decline are more

important. Moving from assuming a continuation of the average 1926-1996 A Inm values to

assuming that A Inm will fall to zero in all age groups by 2100 — from (a) to (c) in the table,
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with any of the life span assumptions — reduces the mean life expectancy at age 0 by somewhat
less than five years, the median life expectancy by somewhat more than four. At age 65 the
reductions are less than four years by both measures, and at age 80 they are less than three. The
differences in 2050 are of course smaller — about 1.6 years at the most at age 0, a little over one
year at age 65, and less than a year at age 80. A century is a very long time in any demographic
forecast, even for social security planning where looking far into the future can be necessary.
Half a century is very long too, but a somewhat more realistic horizon, and the fact that the
difference in life expectancy in 2050 between the two most extreme assumptions is never greater
than 1.6 years at age 0, and only a little more than one year at age 65 (an age neighbourhood
important for social security planning), may give some cause for comfort. In any event, in the
stochastic forecasts to which we turn next we shall hold the oldest age of survival constant at
106, assume that the possibility of a systematic long-term drift toward zero means in the
distributions of rates of mortality decline can be ignored for the 21* century, and proceed to treat
the historical distributions as probability distributions for randomized forecasting experiments
and the drawing of statistical inferences. In doing so we are following the same path as earlier
investigators, who used the Lee-Carter method, although the methods that we experiment with

are different.

8. STOCHASTIC FORECASTS

We present below the results of seven stochastic forecasts of life expectancies, based on
seven different methods. As we have emphasized, the results should be regarded as experimental.
We are interested in the theoretical structures of the alternative methods and in the similarities

and differences among the forecasts that they produce. Forecasts of mean and median life
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expectancies are provided, represented by the 5 , 50™ and 95™ percentiles. The forecast
distributions were generated in each case by 10,000 replications. (Experiments with random
number sequences generated from different seeds indicated that the distributions were quite
stable at 10,000 replications.)

The methods fall into three categories: nonparametric, partially parametric, and fully
parametric. There are three nonparametric forecasts, based entirely on bootstrap procedures.
Their advantage is that they do not require any formal model or assumptions about the exact form
of underlying probability distributions. The partially parametric procedures, of which there are
also three, do require a formal model, and for that purpose we use the AR(2) system presented
previously. They use bootstrap methods to deal with the random selection of disturbances,
drawing for that purpose from the residuals generated in fitting the model, and thus they too
require no exact specification of probability distributions. There is a single fully parametric
procedure, of a more traditional Monte Carlo form. It again uses the AR(2) system, but assumes
that the disturbances come from a multivariate normal distribution, and samples them
accordingly. This method is the most demanding in the prior assumptions that it brings to bear on
the generation of forecasts. The seven alternative methods are identified as (a), (b), (¢), (d), (e),
(f), and (g). Their characteristics are summarized in Table 6 and described in detail in what now
follows. (For stochastic forecasting in a different context, based on Monte Carlo procedures with
a specified probability distribution, see Denton and Spencer, 1988; for applications of bootstrap
forecasting methods, see Bernard and Veall, 1987, Denton and Spencer, 1991. A general review
of time series bootstrap methods is provided in Horowitz, forthcoming.)

Nonparametric Methods

Method (a) employs a vector variant of the overlapping block bootstrap procedure, with

18



fixed block length 25. (As described in the statistics literature, blocks may be overlapping — see
Hall, 1985, Kiinsch, 1988 — or nonoverlapping — see Carlstein, 1986. Also they may be of fixed
length, or of random length as in the stationary bootstrap of Politis and Romano, 1994.) This first
method of ours is an entirely model-free one that preserves the age-sex correlation structure of
changes in mortality rates, allows (within blocks) for serial correlation of the rates of change
(both autocorrelation and cross-group serial correlation), and avoids having to stipulate a
particular type of probability distribution for sampling purposes. (A characteristic of block
bootstrap procedures is that they preserve serial correlation within blocks but the blocks drawn

randomly in each sample are placed in sequence, and there are discontinuities of serial

correlation where one block meets another.) Let v, denote the 38-element vector of Inm_values

in year tand let Av, = v —v,_, denote the corresponding vector of first differences. Now let

AV,

", denote the sequence Av, ., ,Av

inse-s DV s 5 AV, is referred to as a vector block —

or simply block, if the meaning is clear — with starting point t+1. There are 46 such starting
points, and hence 46 vector blocks spanning the period 1926 to 1996. The year 2000 single-age
life table mortality rates are given for purposes of the experiments; they are the nonstochastic

ones calculated in generating Table 5. The stochastic forecasts for years subsequent to 2000 are
then calculated as follows: (1) Choose a AV block at random from the 46 historical blocks. (2)
Employing the step function procedure used for the nonstochastic projections, apply the sequence
of 25 Av vectors in the sample block to project the single-age rates to 2025. (3) Now choose
another AV block at random from the 46 historical blocks (the sampling is with replacement, so

the same block as before could be chosen) and use the vectors of the newly selected block to
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move the single-age rates to 2050, and so on for 2075 and 2100. (4) Use the predicted single-age
mortality rates to derive life expectancies in the chosen years. (5) Repeat steps (1) to (4) 10,000
times and use the distributions of life expectancies thus generated to calculate percentiles (or any
other summary measures that might be of interest).

The procedure just described assumes that output is required only at 25-year intervals, as
in our tables. If output is required for shorter intervals the v vectors can be moved ahead one year
at a time, or 5 or 10 years at a time, say, even though a new block is chosen only every 25 years.
We have set the block length at 25 on the assumption that the implementation of health care
innovations, or other relevant developments, may have mortality-reducing effects that last for a
quarter of a century, but of course that is an arbitrary assumption. One could experiment with
other block lengths.

Block bootstrap methods in the statistics literature are used as a device for drawing
inferences from time series that are subject to serial correlation, the optimum length of block
depending on the sample size and the particular application. Our application can be viewed in

that way, although we do not know what the optimum length is, and simply assume one. An

important consideration in using method (a) is that by sampling the historical A Inm_values as

vectors (instead of treating each age-sex group independently) the structure of correlations
among age-sex group rates of change in mortality rates is preserved, without having to stipulate a
particular type of probability distribution.

Method (b), the second of the two model-free methods, takes a different approach. It too

can be thought of as a vector block bootstrap method, with block length 25 years, and the

elements of the blocks representing A Inm_values. However the assignment of the rows of the
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blocks among age-sex groups is randomized. Each sample vector block, in its original form (the
form defined for method (a)), can be thought of as a 38 x 25 matrix, a row of which corresponds
to one of the 38 age-sex groups. The block is then transformed randomly, as follows. The first
row of the transformed matrix is assigned a number from 1 to 38, and the row of the original
matrix corresponding to that number becomes the first row of the transformed matrix; the second
row of the transformed matrix is then assigned a number from 1 to 38, and the row of the original
matrix corresponding to that number becomes the second row of the transformed matrix; and so
on. (The sampling of rows is with replacement, and hence a given row of the original matrix may

be assigned to more than one row of the transformed matrix.) The transformed matrix having
been created in this way, it then plays the same role in the subsequent calculations as AV does in

method (a).

The rationale for method (b) is the idea that reductions of mortality rates may have causes
which in any period are specific to a particular sex or a particular age range, or at least have
larger impacts on some age-sex groups than on others. Developments in medical knowledge or
practice that reduce infant mortality rates may have little effect on the rates of the elderly;
developments that affect the mortality rates of the elderly may have little effect on the mortality
rates of women at childbirth; developments in the treatment of prostate cancer affect mainly older
men and have no direct effect on the mortality rates of women, and similarly developments that
affect female mortality from breast cancer have no direct effects on men; legislation and
enforcement designed to reduce motor vehicle fatalities may have proportionately different
effects on different age groups, depending on their frequencies of motor vehicle use and their
relative accident risks. Extrapolating from that general notion, life saving or life prolonging
developments in future decades (whatever the developments turn out to be) may alter the patterns
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of mortality reduction among age-sex groups in ways different from the past, and unknowable
today. Groups that had rapid mortality declines in the past may have slow declines in the future,
and conversely. Method (b) thus takes a position that is different from that of method (a): in
method (a), care is taken to preserve past relations among age-sex groups, assuming that they
will hold in the future, while randomizing the matching of historical periods (blocks) with future
periods; in method (b), the intergroup relations are deliberately randomized, as well as the period
matching, on the basis of the argument just given. Both positions may have justification, in
greater or lesser degree. We do not advocate one over the other; we simply explore their
implications for forecasting.

Method (c) is the same as method (b) except that the first four age groups for each sex,
representing ages 0 to 14, are removed from the set of possible choices in making the random
group assignments. Each of the 38 age-sex groups is now matched, for the future, with one of the
30 15-and-over groups. One of the great achievements of the 20™ century was the lowering of
child mortality rates: the four youngest male and female age groups were the ones with the
highest rates of mortality reduction in our data set, which covers seven decades of that century.
The assumption made in method (c) is that those rates of reduction were so large as to be unique
— that such rates cannot again be achieved for any group. We do not assert that to be the case; we
merely make the assumption in order to see how it alters the forecasts obtained by method (b).

Partially Parametric Methods

Method (d), the first of the three under this heading, is a forecasting application of the
sieve or autoregressive bootstrap (Bithimann, 1997; see Choi and Hall, 2000, for a comparative
study of sieve and block bootstrap estimators). It uses the AR(2) system of equations to project,

year by year, from the 2000 mortality rates, with the rates for 2000 and 1999 serving as initial lag

22



values in the projection. In each year the vector of AR(2) predicted changes in mortality rates is
disturbed by adding to it a vector chosen randomly, with equal probabilities, from the set of 68
residual vectors arising out of the estimation of the AR(2) equations. As before, the sampling is
with replacement, so that a given residual vector may be chosen more than once. The method
thus combines model-based predictions with a vector bootstrap procedure, and so both the
historical parametric structure and the intergroup error correlation structure are preserved.
(Autocorrelation in the errors is presumed to have been removed by the AR(2) filtering of the
mortality rates.) Employing the same step function procedure as before, the predicted changes in

group rates are used to move the single-age mortality rates forward, year by year.

Method (e) is the same as method (d), except that the steady state values of A Inm_are

randomized across age-sex groups every 25 years, thus shifting the distributions of the rates of
mortality decline up or down to allow for possible differential effects of medical innovations or

other mortality-reducing developments. The steady state values are the @ values in Table 4.

Randomizing their assignment induces randomization in the constant terms ( 3, ) of the AR(2)

equations through the transformation 3, = @ (1=, = f3,.) , where the asterisk indicates a

randomized parameter. The long-run rate of mortality decline is thus shifted randomly within
each group while the group’s autocorrelation structure is preserved by retaining the same values

for the B, and B, parameters. The contemporaneous intergroup error correlation structure is also

preserved (as in method (d)) by employing the vector bootstrap procedure for selecting residuals.
Method (f) stands in relation to method (e) as (c) stands to (b), in that the under-15 groups

are removed from the set of possible choices for random reassignment of @ values. The purpose

23



is the same as for method (c): to see the effects of assuming that the high rates of mortality
reduction achieved for children in the last century cannot again be achieved for any age-sex
group, whether child or adult.

Fully Parametric Method

Method (g) is the only fully parametric method of the seven we have chosen to
experiment with. It is a traditional type of Monte Carlo method familiar in econometrics. It
assumes again the AR(2) equation system but now stipulates a multivariate normal distribution

for the disturbances, with parameters based on the error covariance matrix calculated in
estimating the system. Letting 2 denote the 38 x 38 covariance matrix, a vector of disturbances
is drawn from N (0, 2) in each forecast year. The historical intergroup error correlation
structure is thus once again maintained, but now in the form of a specific joint probability
distribution. In one way method (g) is similar to methods (a) and (d). It preserves the historical

correlation structure among age-sex groups, as do they; there are no random transfers among

groups.

9. INTERPRETING THE FORECASTS

The stochastic forecasts of mean life expectancies are provided in Table 7 and two
selected ones are plotted in Figure 5; the forecasts are represented in both the table and the figure
by the 5™, 50" and 95" percentiles. The forecasts of median life expectancies (similarly
represented) are provided in Table 8. The 90 percent probability intervals for the means and
medians (differences between the 5™ and 95™ percentiles) are shown in Table 9. As noted

previously, the percentiles were calculated from the distributions generated by 10,000 random
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replications.

Our seven methods fall into two broad categories, determined by two competing views of
how the historical series of declines in mortality rates should be interpreted when they are used as
a basis for constructing stochastic forecasts. The competing views are as follows:

(1) The observed age-sex distribution of mortality declines represents an inherent

(stochastic) pattern that can be expected to hold among age-sex groups in the future, and

should be respected in making forecasts.

(2) The observed age-sex distribution of mortality declines was a consequence of the

history of mortality-reducing developments during the data period, and while the overall

numerical distribution of rates of decline is indicative of the future distribution its

historical identification with particular groups need not be maintained.

Methods (a), (d) and (g) fall into category (1), methods (b), (¢), (¢) and (f) into category (2).
(We would put the Lee-Carter method in category (1); it models the relationships between age-
sex rates and an overall stochastic mortality index, and assumes that the relationships will
continue to hold, stochastically, throughout the forecast period.) At this point we take no position
on which of the categories is “better” but note that forecasting results can be quite different,
depending on which of the two views one adopts.

Our category (2) forecasts of life expectancies (both mean and median) are appreciably
higher than our category (1) forecasts, based on the 50" percentiles. Randomly reassigning actual
rates of decline among age-sex groups (methods (b) and (c)) or steady state rates (methods (e)
and (f)) means that in some proportion of the 10,000 forecast runs the historically higher rates of
decline among younger age groups will replace the historically lower ones among older groups,

where the mortality rates themselves are much higher. Of course, in some proportion too the rates
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of decline will be low for all age groups, but on balance the random effects of faster declines
replacing slower ones dominate the random effects of slower declines replacing faster ones in the
calculation of life expectancies.

The year 2000 mean life expectancy at age 0 (as calculated by us for the experiments) is
78.96. The highest 50" percentile forecast for the year 2100 is produced by method (e), at 98.54,
the lowest by method (a), at 88.68 — a difference of 9.86 years. The range is even greater for the
50™ percentile forecasts of median life expectancy: 101.40 by method (e), 90.47 by method (a)
(compared with 81.75 in 2000); thus a forecast difference of 10.93 years. The spreads are
substantial also within a given forecast distribution, as measured by the 90 percent intervals in
Table 9. In 2100 the interval for mean life expectancy at age 0 ranges from 3.46 years (method
(a)) to 6.18 years (method (b)); for median life expectancy it ranges from 3.14 (method (a)) to
10.30 (method (f)). The 50™ percentiles and 90 percent intervals at ages 65 and 80 differ among
the forecasts in a similar fashion. In the absence of conviction as to which of the broad
categories defined above is the “correct” one, our results suggest a very high degree of
uncertainty about future life expectancies a hundred years from now — even leaving aside the
questions of lower bounds on mortality rates and possible shifts of the probability distributions,
as considered in sections 5 and 6.

The situation is altered greatly if one accepts category (1) as the “correct” one. The choice
then is restricted to methods (a), (d) and (g), and the differences among the 50" percentile
forecasts are quite small, even as far into the future as 2100: the largest difference is 0.38 years at
age 0 for mean life expectancy in that year, and only 0.05 for median life expectancy. Such small
differences among 100-year forecasts generated by such different methods seem quite

remarkable. Much is therefore riding on whether one can accept the category (1) view of how
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historical distributions should be interpreted for forecasting purposes.

Hundred-year forecasts (like the Austad-Olshansky debate about a 150 year life span) are
of academic interest, perhaps fun to think about, but hardly of much practical value. We have
chosen a maximum forecast horizon of 100 years in order to draw out clearly the implications of
different assumptions and the use of different methods, and for that it serves well. Reducing the
horizon to 50 years is a move in the right direction from a policy forecasting point of view if one
is concerned with the future of a social security system; people entering the labour force today
may well be paying into such a system, and expecting to be drawing benefits, a half century and
more from now. But even that is pretty far into the future for most practical purposes. A 25-year
horizon is likely to be of more general interest: for long-run planning of capital investment in the
energy sector; for the construction of schools and hospitals; for the training of physicians,
teachers, and other skilled professionals to meet predicted future demands; and so on. With that
in mind we now focus on the shortest of our forecast periods, 25 years, and see what our results
tell us about life expectancies in the year 2025.

The 50™ percentile forecast of mean life expectancy at age 0 in 2025 ranges from 81.85 to
84.55, a difference of 2.70 years; the corresponding forecast of median life expectancy ranges
from 84.31 to 86.95, a difference of 2.64. Taken at face value, those differences suggest
considerable uncertainty about 2025 expectancies, quite aside from the additional uncertainty
introduced by the stochastic nature of the forecasts — by not knowing where in the probability
distribution for each forecast an expectancy will actually lie. On the other hand, if one can
convince oneself that category (1) is the correct choice — that historical age-sex distribution
patterns are somehow inherent characteristics that should be maintained — then the actual choice

of method is much less important. The choice then is among (a), (d) and (g), and for those the
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largest difference in 50™ percentile forecasts is only 0.23 years for mean expectancy, 0.13 for
median expectancy. So again it is important how one views the historical distributions of
mortality declines.

The 90 percent intervals for the method (a) mean and median forecasts are smaller than
the intervals for the corresponding (d) and (g) forecasts, which are very close to each other. That
is true of all three ages shown in the tables, and it is true also for the later forecast years, as well
as 2025. All in all, the (d) and (g) forecasts are remarkably similar, both in central location (50™
percentile) and in range (90 percent interval). (If a smaller block length were used in method (a)
one would expect its 50™ percentiles to be little changed but its 90 percent intervals to be closer
to those of the other two; we have confirmed by numerical experimentation that that is in fact the
case. Choi and Hall, 2000, demonstrate, in a different setting, that block bootstrap confidence
intervals can be sensitive to block length — more so than sieve bootstrap intervals are to model
lag length.) One result that comes through clearly, then, is that it makes almost no difference
whether one assumes a normal distribution for the disturbances (as in (g)) or uses a bootstrap
method, which avoids any specification of the type of distribution (as in (d)). That is similar to a
result found by Denton and Spencer (1991) in a quite different stochastic forecasting context.
One can of course imagine cases in which a similar result would not hold, because of a
pronounced departure of the error distribution from normality. In practice, though, it is our
impression that the result is not an uncommon one.

As final observations to conclude this section we note the following. The 50" percentile
forecast of mean life expectancy at age 0 reported by Tuljapurkar, Li and Boe (2000) for Canada
in 2050, based on the Lee-Carter method, is 85.26. That compares with our category (1) forecasts

of 84.26 (for method (a)) and 84.67 (for both (d) and (g)) — differences of one year or less. (The
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category (1) forecasts are the ones most comparable with Lee-Carter forecasts.) The 90 percent
interval reported by Tuljapurkar et al. is 2.78, which compares with our intervals of 2.50, 3.44
and 3.32 for (a), (d), and (g), in that order. Tuljapurkar et al. compare their forecasts with ones
based on the assumptions underlying the “official” forecasts made in 1998 for the Canada
Pension Plan (see Office of the Chief Actuary, 1998): their forecast 50" percentile is higher than
the official medium forecast for 2050 and their 90 percent interval is smaller than the official
(nonstochastic, judgemental) high-low range. Our category (1) forecasts lie between the two, in

both respects, but our 50™ percentile forecasts are closer to the Tuljapurkar et al. one.

10. FINAL THOUGHTS

There are various aggregate indexes that can be calculated to represent the long-run
historical time path of mortality. One is the Lee-Carter singular value index; others can be taken
from the economic statistics price/quantity indexing tool kit, as we have done. Whatever the
formula, though, the indexes, in log form, show similar near-linear trajectories. That is true for
Canada over the seven decades of our data period, and it is true also for a number of other
countries over comparably long periods. There are various ways too of modeling the decreases in
mortality rates, both at the aggregate level and at the level of individual age-sex groups. Again
the Lee-Carter method represents one way, and we have experimented with others. Of the two
system models that we estimated at a disaggregated level, we chose one for subsequent
forecasting experiments but the other would be a candidate for further forecasting
experimentation. It brings into play an aggregate index in the forecasting of age-sex mortality
rates — as does the Lee-Carter method, though in a different way. There is little to choose

between our two models on statistical grounds.
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The stochastic forecasting methods we have explored fall into two broad categories: (1)
those that preserve age-sex distribution patterns of mortality decline, and (2) those that
randomize the association of rates of decline across age-sex groups. Category (1) forecasts of life
expectancies are lower, on average, than category (2) forecasts, have shorter forecasting ranges
(90 percent intervals) and are in close agreement, based on 50" percentiles. Within category (1) it
makes little difference whether one uses a nonparametric (bootstrap) method, a partially
parametric method or a fully parametric method: the 50™ percentiles are very close in all three
cases and the 90 percent intervals are generally close too, and for the partially and fully
parametric forecasts they are almost the same. (Were we to use a length shorter than 25 years
with the block bootstrap method the interval for that method would be brought closer to the ones
for the other two.)

There are other issues to consider in making forecasts of life expectancies besides those
associated with stochastic methods. One is the issue of the future lengthening of the life span, or
increasing of the oldest age of survival. Our experimental calculations suggest that while that is
an interesting matter to consider it is not quantitatively important for forecasting life
expectancies, at least for ages short of the very oldest. We considered expectancies up to age 80
and found hardly any effect when the life span to be achieved by 2100 was allowed to increase to
as much as 140 years. The other issue is that of lower bounds on mortality rates and the eventual
slowing of the rates of decline, and that proved to be more important, and difficult to deal with
since the history of mortality declines offers little help. In making our stochastic forecasts we
followed the example of others and assumed that the issue could be ignored, at least for
forecasting within the 21 century. But of course that is just an assumption.

Our aim in this paper has been simply to experiment with different forecasting methods
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and assumptions to see how much difference they would make. But given the range of
possibilities, what should one do in practice when the forecasts are intended for application in
real policy planning situations — in long-run pension planning based on population projections
that require mortality projections, say, or the planning of physical investment, or of human
resource investment where education/training programs may put people into the labour force who
will not retire for three to five decades? In essence such a situation is no different from any
number of other policy forecasting situations: it is a classical planning-under-uncertainty
situation. It may be difficult at present to visualize the application of formal optimization theory.
However, by introducing the notion of probability distributions into mortality forecasting, and
into demographic forecasting more generally, the work of Ronald Lee and others represents an
important step in that direction. In the mortality and life expectancy context, observed historical
distributions provide an objective criterion for stochastic forecasting as long as one assumes that
the distributions will hold in the future, and can be treated as probability distributions. To take a
simple alternative though, in order to make a point, suppose that one thinks it possible that the
rate of decline in mortality rates will fall to zero by the end of the 21% century. Entering the realm
of subjective probabilities — and there is no avoiding that — one might attach probabilities to the
two possibilities: 0.6 and 0.4, perhaps, or some other combination. As a matter of arithmetic it
would then be a simple matter to combine the subjective and objective probabilities so as to
generate stochastic forecasts that reflected both. The forecast range — represented by 90 percent
intervals, say — would then be wider, reflecting the additional uncertainty introduced into the
forecasting framework. Taking a more formal Bayesian-type approach, one could easily allow
instead for a (subjective) probability distribution over the full space of possible shifts in

distributions, rather than allowing for only the two possibilities. At the other extreme, one could
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attach probability 1 to the continuation of the historical distributions, probability 0 to all other
possibilities. In effect that is what we did in our experimental stochastic forecasts, and what
others have done. Another approach inspired by the same concern — that mortality rates cannot
decline forever — would be to set a lower bound on the mortality rate in every age-sex group and
use a model in which the rates approach the lower bounds (rather than zero), asymptotically. But
the choice of ultimate lower bounds would have to have a subjective element, and one can
conceive of treating them stochastically too, by imposing subjective probability distributions.
Whether or not subjective probabilities are brought into play explicitly, stochastic
demographic forecasting allows the possibility (at least at a theoretical level) of defining a loss
function in a particular demographically based planning situation, a corresponding risk function,
and then minimizing the latter as a guide to policy choice — and if the choice framework is
dynamic, reoptimizing from period to period as new information becomes available, and new
stochastic forecasts are produced. A feedback effect on demographic variables would make the
problem even more interesting. All of that takes us rather far from our much more modest goal in
this paper of exploring alternative approaches to the stochastic forecasting of mortality rates and
life expectancies, and so we leave the matter there. The introduction of random behaviour into
demographic forecasting does, though, open the door to possible future applications of
optimization theory and methods, an area in which economists should feel comfortable working

with their demographer cousins.
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FIGURE 1:

MORTALITY INDEXES, 1926-19
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LOGS AND FIRST DIFFERENCES OF LOGS OF SELECTED AGGREGATE
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FIGURE 2: CONTINUED
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FIGURE 2: CONTINUED
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FIGURE 2: CONTINUED

Males
Ages 55-59
0.30
0.20
0.10

0.00 \WVA V/\‘\-/A\./AV‘ \/\ \’V VT \/V\/L/\/‘W\/
-0.10

-0.20
-0.30

-0.40
1926

1936 1946 1956 1966 1976 1986 1996

Ages 60-64
0.30

0.20
0.10
0.00
-0.10
-0.20
-0.30

-0.40
1926

AAMAA_/—\ A A
VVVr VWVV*WWW\/\/\/

1936 1946 1956 1966 1976 1986 1996

Ages 65-69
0.30

0.20
0.10
0.00
-0.10
-0.20
-0.30

-0.40
1926

AW ANA A
vvw V\JVV“\WV T

AAPINTARARNT

1936 1946 1956 1966 1976 1986 1996

Ages 70-74

0.30
0.20
0.10
0.00
-0.10
-0.20
-0.30

-0.40
1926

A A/\m/\ ~ AI\A
N[V N WV WA A

1936 1946 1956 1966 1976 1986 1996

41

0.30
0.20
0.10
0.00
-0.10
-0.20
-0.30
-0.40

1926

0.30
0.20
0.10
0.00
-0.10
-0.20
-0.30
-0.40

1926

0.30
0.20
0.10
0.00
-0.10
-0.20
-0.30
-0.40

1926

0.30
0.20
0.10
0.00
-0.10
-0.20
-0.30
-0.40

1926

Females
Ages 55-59

AAA

1936 1946 1956 1966 1976 1986 1996

Ages 60-64

/‘\AA/\

WA A

1936 1946 1956 1966 1976 1986 1996

Ages 65-69

AI\I\AAA.

/UVV“VVV\/\/V\N\J\PVV\/WV‘«

1936 1946 1956 1966 1976 1986 1996

Ages 70-74

A‘AI‘\._A‘A‘ A‘ A A AN AN I\V
[N AN WAV

1936 1946 1956 1966 1976 1986 1996



FIGURE 2: CONCLUDED
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FIGURE 3: MEAN LOGS OF MORTALITY RATES AND MEAN FIRST DIFFERENCES, BY AGE

GROUP
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Note: Mean A In m, series are plotted with sign changed.
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FIGURE 4: NONSTOCHASTIC FORECASTS OF SURVIVAL FUNCTIONS, BOTH SEXES
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Note: The forecasts assume continuation of 1926-1996 average rates of decline in In m, series
(assumption (a) in Table 5) with maximum age 106 in all years.
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FIGURE 5: SELECTED STOCHASTIC FORECASTS OF MEAN LIFE EXPECTANCY AT
AGE 0, BOTH SEXES COMBINED: 5™, 50", AND 95" PERCENTILES
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Note: Methods (a) and (e), respectively, result in the forecast distributions with the lowest and
highest 50" percentiles.
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TABLE 1: ESTIMATED AR MODELS OF FIRST DIFFERENCES OF LOGS OF MORTALITY
INDEXES (A In M,)

Index (M) Coefficients, t statistics
and model Constant 't AlnMg, t AlnM, t S R*
fwaP31
AR(0) -0.0159 8.7 -- - -- -- 0.0133 -
AR(1) -0.0185 7.0 -0.1701 1.4 -- -- 0.0132 0.0290
AR(2) -0.0175 5.0 -0.1538 1.2 0.0489 04 0.0134 0.0290
fwaP66
AR(0) 0.0145 7.9 - - - - 0.0134 -
AR(1) -0.0185 7.5 -0.2750 24 -- - 0.0129 0.0764
AR(2) -0.0182 54 -0.2611 2.1 0.0091 0.1 0.0132 0.0708
fwaP91
AR(0) 0.0128 6.6 -- - -- - 0.0141 -
AR(1) -0.0173 7.5 -0.3591 3.2 - -- 0.0132 0.1315
AR(2) -0.0184 58 -0.3617 3.0 -0.0652 0.5 0.0136 0.1230
div
AR(0) -0.0148 8.0 - - - - 0.0135 -
AR(1) -0.0180 71 -0.2262 1.9 - -- 0.0132 0.0516
AR(2) -0.0174 51 -0.2124 1.7 0.0293 0.2 0.0133 0.0493

Note: The equations were estimated by GLS to allow for apparent shift in error variances around
1946. S is standard error of estimate; R? is coefficient of determination calculated as in
Buse (1973); t statistics are reported with signs omitted. The data are annual for the period
1926-1996 (before loss of observations because of differencing and lags). See text for index
formulas.
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TABLE 2: ESTIMATED AR(2) SYSTEM MODEL OF FIRST DIFFERENCES OF LOGS
OF AGE GROUP MORTALITY RATES (A In my)

Age group Coefficients, t statistics
(x) Constant t Aln mygq t Alnmy, t S
Males
Under 1 -0.0609 8.6 -0.3397 6.5 -0.0736 14 0.0503
1-4 -0.0953 8.1 -0.6934 131 -0.3158 6.1 0.0904
5-9 -0.0612 5.6 -0.5100 10.0 0.0139 0.3 0.0863
10-14 -0.0660 6.4 -0.5300 9.7 -0.4267 7.9 0.0815
15-19 -0.0246 2.6 -0.2383 4.1 0.0310 0.5 0.0763
20-24 -0.0211 2.4 -0.2027 4.3 0.0499 1.1 0.0724
25-29 -0.0229 34 -0.2883 5.2 0.0904 1.7 0.0537
30-34 -0.0307 4.8 -0.7632 174 -0.2448 5.6 0.0519
35-39 -0.0238 34 -0.4048 6.6 -0.1668 2.8 0.0559
40 - 44 -0.0221 4.1 -0.3508 6.1 -0.1976 3.5 0.0430
45 - 49 -0.0240 4.7 -0.4403 7.3 -0.3789 6.2 0.0411
50 - 54 -0.0118 3.8 0.1403 2.5 -0.2420 4.3 0.0254
55 -59 -0.0126 3.9 -0.1376 2.6 -0.1539 29 0.0259
60 - 64 -0.0115 3.5 -0.2504 4.4 -0.1949 3.5 0.0269
65 - 69 -0.0092 3.1 -0.0499 1.0 -0.1500 3.0 0.0242
70-74 -0.0090 3.0 -0.2852 4.3 -0.0395 0.6 0.0236
75-79 -0.0101 3.2 -0.2501 5.6 -0.0680 1.6 0.0253
80 -84 -0.0098 2.8 -0.2967 7.8 -0.3529 9.9 0.0289
85+ -0.0069 1.5 -0.3198 7.3 -0.0940 2.2 0.0385
Females
Under 1 -0.0707 10.2 -0.3751 8.4 -0.2966 6.6 0.0517
1-4 -0.0905 7.7 -0.6497 121 -0.2185 41 0.0895
5-9 -0.0739 5.9 -0.4446 7.7 -0.3689 6.6 0.0983
10-14 -0.0687 55 -0.3547 6.3 -0.5117 9.3 0.1002
15-19 -0.0636 4.8 -0.4925 9.3 -0.5290 9.9 0.1066
20-24 -0.0524 5.2 -0.2666 4.6 -0.1826 3.1 0.0793
25-29 -0.0640 7.0 -0.6342 11.5 -0.2154 3.8 0.0711
30-34 -0.0554 7.0 -0.4710 8.5 -0.2957 5.4 0.0618
35-39 -0.0454 6.6 -0.6183 8.3 0.0184 0.2 0.0502
40 - 44 -0.0490 7.0 -0.7898 11.1 -0.3392 4.8 0.0526
45 - 49 -0.0441 8.0 -0.7838 115 -0.4764 7.0 0.0414
50 - 54 -0.0297 74 -0.4685 7.9 -0.3319 5.6 0.0309
55 - 59 -0.0293 8.5 -0.5928 11.6 -0.4147 8.1 0.0265
60 - 64 -0.0281 8.1 -0.7261 12.0 -0.2285 3.7 0.0260
65 - 69 -0.0205 6.0 -0.1229 2.2 -0.3221 5.7 0.0262
70 -74 -0.0221 6.7 -0.3217 6.2 -0.2558 5.2 0.0255
75-79 -0.0205 5.6 -0.3710 7.4 -0.1126 2.3 0.0285
80 - 84 -0.0216 5.0 -0.4061 7.9 -0.3238 6.5 0.0348
85+ -0.0137 3.0 -0.2245 4.8 -0.2434 5.4 0.0368

Note: The equations for the 38 age-sex groups were estimated as a system using
iterated SURE to allow for cross-equation error correlations. The system
R? is 0.9988 (see Berndt, 1991, p. 468). See note to Table 1 for other

information.
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TABLE 3: ESTIMATED QVAR(1) SYSTEM MODEL OF FIRST DIFFERENCES OF LOGS

OF AGE GROUP MORTALITY RATES (A In my)

Age group Coefficients, t statistics
(x) Constant t Alnmyg t AIn M4 t S
Males
Under 1 -0.0481 6.8 -0.2679 4.9 0.5091 1.9 0.0486
1-4 -0.0560 4.7 -0.6060 12.1 1.5821 3.4 0.0840
5-9 -0.0505 4.3 -0.5591 10.3 0.9523 2.1 0.0838
10-14 -0.0467 4.0 -0.3522 5.7 -0.0337 0.1 0.0825
15-19 -0.0163 1.5 -0.3078 4.6 0.6979 1.6 0.0756
20-24 -0.0191 1.9 -0.2373 4.1 0.2012 0.5 0.0721
25-29 -0.0236 3.2 -0.2106 3.9 -0.0987 0.3 0.0525
30-34 -0.0221 3.2 -0.5412 10.7 0.0619 0.2 0.0489
35-39 -0.0177 2.3 -0.3732 6.0 0.1886 0.6 0.0557
40 - 44 -0.0164 2.8 -0.2694 4.5 0.0516 0.2 0.0423
45 - 49 -0.0113 21 -0.0457 6.1 0.5224 2.4 0.0390
50 - 54 -0.0077 2.2 0.1510 2.4 0.0776 0.6 0.0249
55-59 -0.0115 3.2 -0.1245 1.9 -0.0596 0.4 0.0257
60 - 64 -0.0102 2.6 -0.3280 55 -0.0121 0.1 0.0277
65 - 69 -0.0100 2.9 0.0482 0.8 -0.2555 1.8 0.0247
70-74 -0.0101 3.1 -0.3085 4.0 -0.1082 0.8 0.0235
75-79 -0.0119 34 -0.3418 4.9 -0.1918 1.3 0.0252
80 -84 -0.0093 2.0 -0.1111 1.7 -0.2709 1.4 0.0328
85+ -0.0095 1.7 -0.3234 5.3 -0.2884 1.2 0.0391
Females
Under 1 -0.0523 7.1 -0.4331 8.8 0.6297 2.2 0.0512
1-4 -0.0554 4.8 -0.5609 11.5 1.5858 3.6 0.0810
5-9 -0.0358 2.9 -0.1978 3.5 0.9860 2.1 0.0880
10-14 -0.0476 3.7 -0.3620 5.0 0.2496 0.5 0.0922
15-19 -0.0376 3.0 -0.2592 3.7 0.1530 0.3 0.0881
20-24 -0.0384 3.6 -0.1432 2.1 0.1900 0.5 0.0753
25-29 -0.0470 5.1 -0.5262 9.6 0.3799 1.0 0.0659
30-34 -0.4250 5.0 -0.3338 5.2 -0.1506 0.5 0.0602
35-39 -0.0423 6.1 -0.5179 6.7 0.0292 0.1 0.0481
40 - 44 -0.0251 3.8 -0.7111  10.7 1.0083 3.9 0.0467
45 - 49 -0.0235 4.2 -0.5955 7.6 0.5641 2.5 0.0401
50 - 54 -0.0211 4.5 -0.4508 7.5 0.1529 0.8 0.0336
55-59 -0.0212 5.7 -0.4901 8.8 -0.0233 0.2 0.0262
60 - 64 -0.0210 5.7 -0.5813 8.3 0.0981 0.7 0.0259
65 - 69 -0.0142 3.5 -0.0153 0.2 0.0036 0.0 0.0287
70-74 -0.0190 4.6 -0.2007 2.8 -0.2541 1.4 0.0298
75-79 -0.0198 4.8 -0.2898 4.2 -0.1897 1.1 0.0293
80 - 84 -0.0220 4.5 -0.0547 0.7 -0.7490 3.3 0.0348
85+ -0.0166 3.2 -0.2165 3.3 -0.4636 2.1 0.0366

Note: See note to Table 2.

The system R? is 0.9965.
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TABLE 4: STEADY STATE VALUES OF A In m, BASED ON AR(2) SYSTEM MODEL
(a VALUES) AND MEAN VALUES CALCULATED FROM 1926-1996 DATA

Age group o value Mean A In m,, 1926-1996
(x) Males Females Males Females

Under 1 -0.0431 -0.0423 -0.0437 -0.0428

1-4 -0.0474 -0.0484 -0.0471 -0.0486

5-9 -0.0409 -0.0408 -0.0400 -0.0386
10-14 -0.0337 -0.0368 -0.0332 -0.0369
15-19 -0.0204 -0.0315 -0.0200 -0.0306
20-24 -0.0183 -0.0361 -0.0171 -0.0353
25-29 -0.0191 -0.0346 -0.0171 -0.0341
30-34 -0.0153 -0.0314 -0.0150 -0.0305
35-39 -0.0151 -0.0284 -0.0153 -0.0280
40 -44 -0.0143 -0.0230 -0.0140 -0.0219
45 - 49 -0.0132 -0.0195 -0.0126 -0.0195
50 - 54 -0.0107 -0.0165 -0.0097 -0.0160
55-59 -0.0097 -0.0146 -0.0090 -0.0140
60 - 64 -0.0080 -0.0144 -0.0076 -0.0141
65 - 69 -0.0077 -0.0142 -0.0070 -0.0146
70-74 -0.0068 -0.0140 -0.0072 -0.0139
75-79 -0.0077 -0.0138 -0.0078 -0.0141
80 -84 -0.0059 -0.0125 -0.0064 -0.0125

85+ -0.0049 -0.0094 -0.0046 -0.0095

Note: See text for calculation of a values.
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TABLE 5: NONSTOCHASTIC FORECASTS OF LIFE EXPECTANCIES, BOTH SEXES COMBINED

Assumed rates Assumed Life expectancies
of decline of maximum Atage 0 At age 65 At age 80
In m, age attained 2000 2050 2100 2000 2050 2100 2000 2050 2100
by 2100
-- means --

(a) Continuation 106 78.96 84.68 89.09 18.53 22.23 25.66 8.94 11.38 13.81
of 1926-96 110 78.96 84.69 89.16 18.53 2224 25.74 8.94 11.39 13.90
average rates 120 78.96 84.70 89.20 18.53 2224 25.78 8.94 1140 13.94
of decline 130 78.96 84.70 89.20 18.53 2224 25.78 8.94 1140 13.95

140 78.96 84.70 89.20 18.53 2225 25.79 8.94 1140 13.95

(b) Rates of 106 78.93 83.89 86.80 18.52 21.66 23.83 8.93 10.99 1250
decline fall to 110 78.93 8390 86.83 18.52 21.67 23.86 8.93 11.00 1253
Y2 of those in 120 78.93 83.90 86.84 18.52 21.67 23.87 8.93 11.00 12.55
(a) by 2100 130 78.93 83.90 86.84 18.52 21.67 23.88 8.93 11.00 12.55

140 78.93 83.90 86.84 18.52 21.67 23.88 8.93 11.00 12.55

(c) Rates of 106 78.91 83.07 84.24 18.51 21.08 21.91 8.92 10.60 11.16
decline fall to 110 78.91 83.07 84.25 1851 21.09 21.91 8.92 10.60 11.17
zero by 2100 120 78.91 83.07 84.25 1851 21.09 21.92 8.92 10.61 11.17

130 78.91 83.07 84.25 1851 21.09 21.92 8.92 10.61 11.17
140 78.91 83.07 84.25 18.51 21.09 21.92 8.92 10.61 11.17
-- medians --

(a) As above 106 81.75 86.74 90.59 18.86 22.80 26.23 8.26 10.75 13.36

(b) As above 106 81.73 86.06 88.56 18.85 22.22 24.39 8.25 10.35 11.92

(c) As above 106 81.71 85.36 86.36 18.83 21.63 22.47 8.24 995 10.52

Note: Age 106 is the oldest age at which there are any survivors in the 1991 Canadian life table. The present
table is based on separate projections for males and females, combined assuming a male/female ratio

at birth of 1.05377. Median life expectancies are unaffected by altering the maximum age.
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TABLE 6: SUMMARY OF FORECAST METHODS

Method

Parametric,
nonparametric
classification

Model
used

Distribution of
disturbances

Time period
randomization

Age-sex group
randomization

(a)

(b)

(c)

()

(9

Nonparametric

Nonparametric

Nonparametric

Partially
parametric

Partially
parametric

Partially

parametric

Fully
parametric

None

None

None

AR(2)

AR(2)

AR(2)

AR(2)

Not specified

Not specified

Not specified

Not specified

Not specified

Not specified

Multivariate
normal

25-year vector block
bootstrap applied to
A In m, series

25-year vector block
bootstrap applied to
A In m, series

25-year vector block
bootstrap applied to
A In m, series

Vector bootstrap
applied each year to
model residuals

Vector bootstrap
applied each year to
model residuals

Vector bootstrap
applied each year to
model residuals

Disturbance vector
drawn each year
from N(0,%)

None

A In m, blocks
reassigned
randomly

A In m, blocks
reassigned
randomly,but

under-15 groups
excluded

None

a values
reassigned
randomly

a values
reassigned
randomly, but
under-15 groups
excluded

None
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TABLE 7: STOCHASTIC FORECASTS OF MEAN LIFE EXPECTANCIES, BOTH SEXES COMBINED

Forecasting Year Selected percentiles of mean life expectancy distributions
procedure At age O At age 65 At age 80
5th 50th 95th 5th 50th 95th 5th 50th 95th

Nonparametric

(a) Vector block 2000 - 7896  -- - 18563  -- - 8.94  --
bootstrap applied 2025 81.20 81.85 82.82 19.64 20.49 20.96 9.58 10.30 10.67
to historical 2050 83.14 84.46 85.64 21.06 2225 23.06 10.60 11.58 12.30
AIn m, series 2075 85.02 86.68 88.08 2256 23.94 24.98 11.67 1286 13.77

2100 86.76 88.68 90.22 23.97 2554 26.75 1275 1410 15.13

(b) like (a) but random 2000 -- 78.96  -- -- 18.53 - -- 8.94 -
reassignment of 2025 82.63 84.16 86.29 20.88 2249 2478 10.09 11.78 14.61
blocks among 2050 86.82 89.30 92.21 2403 26.68 29.75 12.24 15.09 18.53
age-sex groups 2075 90.76 93.93 97.07 27.35 30.58 33.79 14.68 18.16 21.50

2100 94.37 97.70 100.55 30.43 33.83 36.71 17.13 20.66 23.51

(c) Like (b) but under-15 2000 - 78.96  -- - 1853 - - 8.94 -
groups excluded in 2025 81.83 82.83 84.57 20.35 21.46 23.29 9.83 10.98 13.34
reassignment of 2050 85.11 86.86 89.24 22.80 24.63 27.15 11.42 13.41 16.42
blocks 2075 88.32 90.64 93.45 2537 27.77 30.70 13.29 15.88 19.04

2100 91.36 94.03 96.92 27.93 30.66 33.63 1525 18.13 21.31

Partially parametric
(d) AR(2) model; vector 2000 -- 78.96 - -- 18.53 - -- 8.94 -
bootstrap applied to 2025 80.92 82.08 83.29 19.28 20.39 21.57 9.16 10.14 11.19
model residuals 2050 82.99 84.67 86.43 20.55 2219 23.90 9.91 11.34 1290
2075 84.96 86.97 89.12 2192 2390 26.06 10.80 12.54 14.51
2100 86.70 89.05 91.52 23.22 2556 28.02 11.64 13.74 15.98

(e) like (d) but random 2000 -- 78.96 - -- 18.53 - -- 8.94 -
reassignment of a 2025 82.70 84.55 86.73 20.97 22.82 25.07 10.16 12.10 14.58
values among 2050 87.15 89.97 9297 2440 27.26 30.34 12.53 1552 18.67
age-sex groups 2075 91.32 94.73 97.81 27.83 31.31 34.37 15.15 18.67 21.68

2100 95.10 98.54 101.16 31.13 34.60 37.18 17.76  21.20 23.67

(f) Like (e) but under-15 2000 - 78.96 - - 18.53 - - 8.94 -
groups excluded in 2025 81.78 83.31 84.98 20.33 21.81 23.51 9.86 11.30 13.12
reassignment of 2050 83.30 87.60 89.99 2296 25.28 27.69 11.61 13.93 16.45
a values 2075 88.71 91.57 94.40 2573 28.60 31.45 13.67 16.52 19.29

2100 91.99 95.16 97.96 28.49 31.67 34.42 15.76 18.89 21.52

Fully parametric

(9) AR(2) model; error 2000 -- 78.96  -- -- 18.53 - -- 894  --
vectors drawn from 2025 80.91 82.07 83.25 19.29 20.39 21.53 9.17 10.14 11.16
multivariate normal 2050 83.08 84.67 86.40 20.64 2217 23.88 9.96 11.35 12.87
distribution 2075 85.01 86.97 89.08 21.98 23.92 26.02 10.82 12.56 14.48

2100 86.78 89.06 91.48 23.32 25.58 28.02 11.70 13.78 15.94
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TABLE 8: STOCHASTIC FORECASTS OF MEDIAN LIFE EXPECTANCIES, BOTH SEXES COMBINED

Forecasting Year Selected percentiles of median life expectancy distributions
procedure At age O At age 65 At age 80
5th 50th 95th 5th 50th 95th 5th 50th 95th

Nonparametric

(a) Vector block 2000 - 81.75 - - 18.86  -- - 826 --
bootstrap applied 2025 83.43 84.31 85.27 2015 21.01 21.52 8.94 9.66 10.02
to historical 2050 85.40 86.66 87.67 21.75 22.86 23.64 9.98 10.96 11.75
AIn m, series 2075 87.14 88.63 89.84 23.27 2459 25.64 11.07 1233 13.37

2100 88.75 90.47 91.89 2469 26.27 27.58 1219 13.71 15.02

(b) like (a) but random 2000 -- 81.75 - -- 18.86  -- -- 8.26 -
reassignment of 2025 84.75 86.51 88.67 21.23 2288 25.34 9.43 11.15 14.51
blocks among 2050 88.78 91.54 96.58 2459 2752 32.88 11.67 15.02 21.06
age-sex groups 2075 92.36 96.93 103.67 27.87 3256 39.06 14.30 19.19 24.82

2100 95.30 100.82 105.31 30.64 36.09 40.36 16.58 21.81 25.54

(c) Like (b) but under-15 2000 - 81.75 - - 18.86  -- - 8.26 -
groups excluded in 2025 84.09 85.40 86.96 20.63 2190 23.53 9.16 10.36 12.71
reassignment of 2050 87.21 89.12 92.02 23.28 25.26 28.49 10.82 13.01 17.23
blocks 2075 90.25 93.07 98.23 25.95 28.93 34.40 12.83 16.13 21.90

2100 93.15 97.21 103.32 28.67 32.83 38.76 15.10 1947 24.73

Partially parametric
(d) AR(2) model; vector 2000 -- 81.75 - -- 18.86  -- -- 8.26 --
bootstrap applied to 2025 83.30 84.44 85.59 19.86 20.90 22.04 849 9.49 10.60
model residuals 2050 85.17 86.69 88.43 2118 2273 2454 9.22 10.72 12.47
2075 86.71 88.65 91.04 2247 2445 26.91 10.04 11.98 14.39
2100 88.05 90.51 93.58 23.62 26.13 29.25 10.86 13.32 16.34

(e) like (d) but random 2000 - 8175 - - 1886 - - 8.26 -
reassignment of 2025 84.96 86.95 89.28 21.35 2330 2586 952 1151 14.60
values among 2050 89.12 9240 97.32 2489 2831 3351 1197 1566 21.17
age-sex groups 2075 93.02 98.08 104.11 2851 33.62 3942  14.87 19.98 24.99

2100 96.00 101.40 105.43  31.37 36.63 4046 17.21 2213 2559

(f) Like (€) but under-15 2000 -- 8175 - ~ 1886 - - 8.26 -
groups excluded in 2025 84.26 85.83 87.52 2074 2229 24.08 921 10.69 1275
reassignment of 2050 87.53 89.97 93.06 2349 26.04 2928 11.01 13.68 17.22
a values 2075 90.67 94.26 99.20  26.35 30.06 3511 1326 17.08 22.19

2100 93.95 98.87 104.25 2944 3439 39.57 15.84 20.69 25.06

Fully parametric

(g) AR(2) model; error 2000 -- 81.75 - -- 18.86  -- -- 8.26 --
vectors drawn from 2025 83.30 84.43 85.55 19.86 20.90 22.02 8.50 9.48 10.56
multivariate normal 2050 85.24 86.66 88.41 21.25 2271 24.51 9.26 10.72 12.45
distribution 2075 86.78 88.64 91.01 2251 2445 26.87 10.08 12.00 14.34

2100 88.15 90.52 93.53 23.73 26.16 29.21 10.95 13.35 16.29
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TABLE 9: 90 PERCENT PROBABILITY INTERVALS DERIVED FROM STOCHASTIC FORECASTS
OF MEAN AND MEDIAN LIFE EXPECTANCIES, BOTH SEXES COMBINED

Forecasting
procedure

Nonparametric
(a) Vector block

bootstrap applied
to historical
AIn m, series

(b) like (a) but random
reassignment of
blocks among
age-sex groups

(c) Like (b) but under-15
groups excluded in
reassignment of
blocks

Partially parametric

(d) AR(2) model; vector
bootstrap applied to
model residuals

(e) like (d) but random
reassignment of a
values among
age-sex groups

(f) Like (e) but under-15
groups excluded in
reassignment of
o values

Fully parametric

(g9) AR(2) model; error
vectors drawn from
multivariate normal
distribution

Year

Mean life expectancies

Median life expectancies

Atage 0 Atage 65 Atage 80

Atage 0 Atage65 Atage 80

2025
2050
2075

2100

2025
2050
2075
2100

2025
2050
2075
2100

2025
2050
2075
2100

2025
2050
2075
2100

2025
2050
2075
2100

2025
2050
2075
2100

1.62 1.32
2.50 2.00
3.06 242
3.46 2.78
3.66 3.90
5.39 5.72
6.31 6.44
6.18 6.28
2.74 2.94
4.13 4.35
5.13 5.33
5.56 5.70
2.37 2.29
3.44 3.35
4.16 4.14
4.82 4.80
4.03 4.10
5.82 5.94
6.49 6.54
6.06 6.05
3.20 3.18
6.69 4.73
5.69 5.72
5.97 5.93
2.34 2.24
3.32 3.24
4.07 4.04
4.70 4.70

1.09
1.70
2.10

2.38

4.52
6.29
6.82
6.38

3.51
5.00
5.75
6.06

2.03
2.99
3.71
4.34

4.42
6.14
6.53
5.91

3.26
4.84
5.62
5.76

1.99
2.91
3.66
4.24

1.84 1.37 1.08
2.27 1.89 1.77
2.70 2.37 2.30
3.14 2.89 2.83
3.92 4.11 5.08
7.80 8.29 9.39
11.31 11.19 10.52
10.01 9.72 8.96
2.87 2.90 3.55
4.81 5.21 6.41
7.98 8.45 9.07
10.17 10.09 9.63
2.29 2.18 2.11
3.26 3.36 3.25
4.33 4.44 4.35
5.53 5.63 5.48
4.32 4.51 5.08
8.20 8.62 9.20
11.09 10.91 10.12
9.43 9.09 8.38
3.26 3.34 3.54
5.53 5.79 6.21
8.53 8.76 8.93
10.30 10.13 9.22
2.25 2.16 2.06
3.17 3.26 3.19
4.23 4.36 4.26
5.38 5.48 5.34
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