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Abstract:

The O(n™) bias and O(n®) MSE of OLS are derived for iid samples. An approach is suggested for handling
nonexistent finite sample moments. Bias corrections based on plug-in, weighting, jackknife and pairs
bootstrap methods are equal to Op(n'3’2). Sometimes they are effective at lowering bias and MSE, but not
always. In simulations, the bootstrap correction removes more bias than the others, but has a higher MSE.
A hypothesis test is given for the presence of this bias. The techniques are applied to survey data on food
expenditure, and the estimated bias is small and statistically insignificant.

Key words: OLS bias; finite sample moments; Nagar approximation; bias correction; pairs bootstrap
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Résume

Le biais O(n™) et O(n®) d’erreur quadratique moyenne des moindres carrés ordinaires est dérivé
sous I’hypothése d’un échantillons indépendants et distribués de facon identique. On propose une
approche qui permet d’adresser I’inexistence de moments en échantillons finis. Les corrections de
biais fondées sur les méthodes d’insertion, de pondération, de projection (jackknife) et de
bootstrap sont égales a Op(n'3’2). Ces méthodes sont parfois capables de réduire les biais
d’estimation et I’erreur quadratique moyenne. Dans les simulations, la correction par la méthode
du bootstrap élimine davantage les biais d’estimation que les autres méthodes, mais engendre une
erreur quadratique moyenne plus élevée. Un test d’hypothése de I’existence de ce biais est
développé. Ces techniques sont appliquées a des données de sondage sur les dépenses de
consommation alimentaire; le biais d’estimation est petit et n’est pas statistiquement significatif.

* 1 would like to thank Jeff Wooldridge and Jeff Racine for helpful advice, and Tom Crossley and Yugian Lu for
supplying the food expenditure data. This research was supported by the Social and Economic Dimensions of an Aging
Population Il (SEDAP) Research Program — a SSHRC MCRI grant with Byron Spencer the Principal Investigator.



1 Introduction

This paper examines the O(n~!) bias and O(n~?) mean squared error (MSE) of the most common estimator,
OLS, in one of the most common statistical frameworks, i¢d sampling. This bias is different from the more
familiar O(1) omitted-variables or endogenous-regressor bias. It is caused by correlations between the linear
regression disturbances and nonlinear functions of the regressor variables x that arise from misspecification
of the conditional mean, F(y|z). Section 5.1 contains a simple illustration.

The parameter of interest is 3 = FE(xz')"!E(xy). [ minimizes the mean square specification error
E(2'8* — E(y|z))? (Goldberger (1991), Poirier (1995, p.69)). It is a weighted average of the gradients
O0FE(y|xz)/0x (Peracchi (2001, p.46)). Angrist et al. (2006, p.540) state “OLS provides a meaningful and
well-understood summary statistic for conditional expectations under almost all circumstances.”

OLS may not have finite sample moments even with finite population moment assumptions (e.g. Schmidt
(1976, pp.93-96)). #d sampling often leaves a non-zero probability of a singular X’X matrix. In this paper,
restricted OLS is used when X’X is singular or nearly so. The resulting modified OLS estimator has finite-
sample moments while retaining the same Op(n_3/ 2) expansion as the un-modified OLS. As a result, Nagar
(1959) approximations are valid for the modified estimator.

Section 2 presents the model, the O(n~!) bias, and the finite-moment modification. In Section 3, bias
corrections are suggested, and MSE approximations are given. The effect of bias correction on the MSE is
studied for special cases. A procedure is suggested for testing the null hypothesis that the O(n~!) bias is
zero in Section 4. Section 5 contains examples and numerical evaluations. Section 6 illustrates these bias
corrections and tests with an application to data on food consumption used by Crossley and Lu (2004).

Remarks are collected in Section 7, and Section 8 summarizes. Proofs and other details are in the Appendix.

2 OLS Bias

2.1 Notation and Assumptions

y is a scalar random variable and z is a K-element random vector. Exz’ = A is nonsingular. Let
8=A"E(zy) (1)
y, x and 3 are related as
y=2a'8+v (2)

The disturbance v satisfies the unconditional moment restriction Ezv = 0 due to (1), but the conditional

mean of v is nonzero,

E(v|z) = E(ylz) — 2’8 #0 (3)



The data, (y1,21), (y2,22); - - -, (Yn, Tn) are 1id draws of (z, y), generated according to an unknown population
distribution. The OLS estimator is

b= (Z zixh) ! szyz =AY (n? inyi) (4)

where A = n~! > xixy. bis a consistent estimator of 3 (White (1984, p.17)). In finite samples, A may be

singular and b may be undefined.

2.2 Existence of Finite-Sample Mean and Variance: Modified OLS

Let = [1 d ] where Prob(d = 1) = p and Prob(d = 0) = 1 — p. A is singular when the sampled d;’s
all equal 0 or all equal 1. This occurs with probability p™ + (1 — p)™, which is strictly positive for finite n
and any p € [0,1]. In practice (the reg command in Stata for example) a singular A often is managed by

deleting regressors. Similarly, define a modified OLS estimator as

(5)

b otherwise

{ br if M(A) <7
by =

where 0 < 7 < A1(A4), A1(A) is the smallest characteristic root of A, and bg is any K x 1 vector having
a finite mean and variance given )q(fl) < 7. In the dummy variable regressor example given above, br
might be bg = [ § 0] (if § has a finite mean and variance) or even bg = 0. 7 must be small enough to
assure 7 < A;(A). For example, set 7 just large enough to account for numerical computing precision. This
truncation rule is similar to that suggested for bootstrap MSE estimation by Liu and Singh (1992, p.382).
Their rule uses the determinant instead of \;.

Theorem 1(a) describes assumptions sufficient for the existence of bys’s finite-sample mean and variance.

Sufficient conditions for by — b = 0 + 0,(n~%/2) are given in Theorem 1(b).
Theorem 1
(a) If the moments E(x?y?) are finite, then E(byr) and Var(by) are finite.
(b) If the moments E(x°) are finite, and A has a distinct minimum characteristic root \1(A), then by =

b+ Op(n_g/z)-

Theorem 1(a) implies that the O(n~!) bias and O(n~?) MSE approximations for by, are valid in Sargan’s

(1974) sense. Theorem 1(b) implies that these approximations are the same as for bys as for b.
2.3 OLS Expansion
To reduce notation, let H be a matrix satisfying HH' = A~! and H'AH = I. Then

y = 2'B+v
= J(HB)+v



where z = H'xz and Ezz' = I. The OLS estimator of H~!4 is
H = (Z zi2)) 7t Z 2y = H 1B+ (n™? Z 2i2)) " H(n Tt Zzivi) (6)
Let

A, =n"! Z 2z — T and Ay, =n"" Zzivi
A, and A, are the O, (n~1/2) differences between the sample moments appearing in (6) and their population
counterparts. Substituting in (6) and expanding gives

H%W—H'8 = (I+A..) A,
= AL, —ALAL+A2AL +0,(n7?) (7)

When appearing in an expectation, a term such as z; represents the i*» random variable z rather than its

realized value. The expectations of the terms in (7) are

EA,, = En7! Zzivi =FEzv=0
EA.A., = En™?) (zi2] — I)(zv))
ij

= n_2E§ zi(zgzi)vi—n_lEE 2iU;
i i

= n'E(Z2)2v -0
= nly
EA% A,, = En? Z(z,z; — I)(zj2; — I)(zkvr)
ijk
= n?E(Z2)’2v=0+0(n"?)
where v = E(2'z)zv.
2.4 OLS Bias to O(n™!)
The O(n~1) bias of H~1b is then
EH ') -H'8=-n"1y+0(n? (8)
In the original parametrization (1) to (4), the result is
E(b) - B=-n"tA"y 4 0(n7?) (9)

where v* = E(z' A~ 1z)zv.



3 Bias Corrections and O(n~?) Mean Squared Errors

3.1 Bias Corrections

A consistent estimator of n times the O(n~1) bias term from (9) is

— ~

nBias(b) = —(nd) S (npi)aie; (10)
which uses
A7V = A7l 4 0,(1)
npi = @A zi+ op(1)
vp = €+ Op(l)

where p;; = /(Y zix}) "'z, = n'alA " x; and e; = y; — xb. A plug-in bias-corrected estimator (BC) is

then

br ifM(A) <7

b = 11

LM { b.1 otherwise, where (11)
be1 =b— Blé/ls\(b) =b+ (Z .’II.L'.'I,';)_I Z T;Pii€i

Another BC is the pairs bootstrap correction

B {bR if A (A) <7 12)

bboot M =
’ bboot Otherwise, where

bboot =2b— BB
B
I_)B = B_l ZbBﬁ,M and
£=1

) e ity <
BEM bpe otherwise, and

i-1,_—1
bpr = A, 'n E TeiYei
i
A _ -1 ol
(=n TpiTy;
7

be1,m and bpoot,is have been modified in the same way as was bys. Each bpg s is constructed from a

¢th pairs bootstrap sample, (2, ye;), is

pairs bootstrap sample, indexed by ¢. The " observation of the
sampled with replacement from the original data. The bps as’s are modified using the same truncation rule
as in (5), applied to A,.

Theorem 2 is the counterpart to Theorem 1 for b1 ar and bpoot,as-



Theorem 2

(a) If the moments E(z8y?) are finite, then E(bo ar) and Var(be ar) are finite. If the moments E(z?y?)
are finite, then E(bpoot,m) and Var(bpoot,m) are finite.

(b) If the moments E(x®) are finite, and Amin(A) is a distinct minimum characteristic root, then bey p =
be1 + op(n*?’/z) and bpoot, M = bboot + op(n’?’/z).

Three other BCs that are the same to O, (n~3/2) are
be = (O wixi(1+pii) ™" Z z;yi(1 + pii) (13)
bes = (Z zizi(1 = pis) Z ziyi(1 - pi) ™ (14)
bjack = b+(n—1)n sz Z (1 —pis) ‘e (15)

beo and b3 are weighted least squares, and bj4ck is the standard or balanced jackknife estimator (Hinkley
(1977, equation (2.4)).

3.2 0,(n"%?) expansions
The expansion shared by the five BCs defined above is given in Theorem 3.
Theorem 3

H_lbc - H_IB = sz - (Azzsz - n_l'Y)

+n_1(A - A22'7 —n! Z z7 Z; Azzzz) v; — zsz) +o ( 3/2) (16)

where Q,1, = E(22')(2'2). b. refers to any of bei, bei v beas beas 07 bjack- be includes bpoor and byoot,nr if B~1
in (12) is o(n=2).

The condition on B reduces the bootstrap sampling error to o,(n~=3/2).

3.3 O(n"%) Mean Squared Errors

Let Qy(y,.) = E(22')g(v, z), where g(v, 2) is some scalar random variable. 2z, and 7, denote the a'" elements

of z and ~.



Theorem 4

Given the assumptions in Theorems 1 and 2,

K
(a) MSE(H™'5) = n7'Qu +n72(1 + Qo — Quz 3302+ Qs + Q00040
a=1
K
— 2012 + 2 Z Q.. vYa + 0o(n7?) (17)
a=1
K
(b) MSE(H 'b,1) = MSE(H "byoor) = n Qs + 1 *(Qurr s + 3 02, — Q) +o(n %) (18)
a=1

Letting b, refer to b.; or bpoot, the difference between (18) and (17) is
MSE(H 'b.) — MSE(H ~'b)

K K
= 0 2D 02 2D Qe+ Qe D+ Qe Q2 — 2u0s2) + 0(n72) (19)
a=1

a=1

3.4 Special Cases

The Q matrices and vy’ in (19) all are nonnegative. The minus sign on the very last term rules out a general
result about the BCs reducing the O(n~2) MSE. That last term can dominate the others, and the BCs can
increase MSE. To gain some intuition on when the bias is large and when the BCs do not reduce MSE, two

special cases are considered.

3.4.1 No misspecification or heteroskedasticity
Let E(v|z) = 0, then Eb = . Let E(v?|z) = o for all z, The terms in (19) simplify to v = 0, Q. , = 0,
Q2 = 0%I, and Q1,2 = 02Q,r,. (19) becomes
MSE(H 'b.) ~MSE(H'0) = —-n"2(0+0+0+0*Qr, + 0>, — 20%Q,1,) + 0(n™?)
0+o(n?) (20)

Thus the BCs have no effect on the O(n~=2) MSE when there is no misspecification or heteroskedasticity.

3.4.2 Single regressor with misspecification and heteroskedasticity

Let = be scalar, with moments Fx“ = pu,, standardized so that u; = 0 and gy = 1. Then z = z and
Exz’ = H = 1. Let the conditional mean of the disturbance be E(v|z) = a(z* — py+12) where w is a non-
negative integer. This model satisfies Evz = 0 although E(v|z) # 0 unless o = 0 or w = 1. Before specifying
heteroskedasticity, note that F(v?|z) is the sum of two components, E(v|z)? and E((v— E(v|2))?|z). E(v|2)?
is the square of the error in specification of the mean that already has been specified. The second component

is the conditional variance of the disturbance € in the well-specified regression y = E(y|z) + €. Let it be



E((v— E(v|2))?|z) = 0%(1 + 622%) where § > 0 and ¢ is a non-negative integer. The terms in (19) become

v = Ez’v=0a(twys — flot1pa)
K
Z Qzav = E(Z3U)2 = ’72
a=1
Qe = E(Z*%) = 0®(t2wt2 — bt thots + o1 pia) + 0 (1 + Opogio)
Q. = E(24) = M4
K
Z QevYa = E(Z3U)7 = 72
a=1
Qo2 = E(z4v2) =a’ (H2w+4 — 2fwt1H0+5 + /LZ+1/L6) +o° (Ha + Op2pta)

Applying (8) or (9), the OLS bias is
E(b) -8 = —n_la(uw+3 — fwtipa) + O(n_z)

Not surprisingly, the bias is larger when n is small and when the scale of the misspecification, «, is large.

The third factor, py+3 — fw+1/44, depends on higher moments of z through the function

dp = Hp+2 — Hpl4, P:LQa

evaluated at p = w + 1. At one extreme, when z is symmetric and w is even, then p,13 = pw+1 = 0.
Even though E(v|z) may differ from zero, it is not correlated with 23, so the O(n~!) bias is zero. At the

other extreme, when w is large and odd, and the probability function of z has thick enough tails, then

_(2n)!

Pw+3 > o1, leading to a large bias. For example, if z ~ N[0, 1], then s, = 477 and

qs =6 when w =3
— L) 1) = = hen w = 21
Qu+1 = Hw+3 = Pot1fid = m(w —1)=4q 9% =60 whenw=5 (21)

2 qgs =630 whenw=7

Turning to the MSE comparison, (19) becomes

n?*(MSE(b.) — MSE(b)) = —(v* + 27 + 29% + Quopiq + paQy2 — 2Q.1,2) + 0(1)

= (57" + 2(1aQu2> — 2Q.102)) + (1)
= @®(=5(thws — per1pa)® + 22w ra — Powr2pia)
—Apti1 (Bots — torapa) + 20841 (6 — 13)) + 02012 14 — pagrapa) + o(1)
= o (511 + 202042 — Yt 1Qurs + 247 1104) + 07002912 + o(1) (22)

Setting o = # = 0 recalls result (20).
Two cases can be identified from (22) in which BC will increase MSE. One is the large-bias situation
mentioned above. Let § = 0. When w is odd, the arguments in the ¢ functions are even. ¢, increases

dramatically with p when z ~ N[0, 1], as shown in (21). With thicker-than-normal-tailed z distributions,



this increase would be even more dramatic. The g2, 42 term has the largest argument, hence it may dominate
the other terms in (22), and it has a positive sign.

A second situation in which BC increases MSE involves heteroskedasticity. Let a = 0. When 6 > 0 and
¢ > 0, the last term of (22) shows that MSE(b.) > MSE(b). Again, (21) suggests that this MSE increase is
large when ¢ is large and z is sufficiently thick-tailed. The weighted least squares corrections defined in (13)
and (14) show that the BCs place a higher weight on the larger-p;; observations, whereas a GLS estimator
would lower the weight on those observations with this form of heteroskedasticity. Hence it is not surprising
that the BCs increases MSE in this case, particularly when there is no bias to correct.

The RMSE ratios shown in Figures 1, 3 and 6 of Section 5 show that the BCs can reduce the MSE in

other situations.

4 A Test for OLS Bias

Although many commonly-used significance tests have power against the misspecification that causes this
bias, a direct test should have highest power in large samples. The following theorem enables Wald tests to

be constructed from the bias estimator defined in (10).
Theorem 5

(a) If the moments Ex%y? are finite, then

n}/2(nBias(b) — nBias(b)) — N0, Vaias]

where nBias(b) is defined in (10).

(b) A consistent estimator of Vpias s
Viias =01 (HY)i(HY)! (23)

where

— ~

(H’([J)z = Ail(npii)aviei — Ail(finp)fiill'iei —C; — Ailxil’gAil’S/* (24)

and



Agyy =n71 Z z; i (zive;)

A =nt Z zi(npi;)e;
Tia and c;, are the at™ elements of z; and ¢;. (A™Y),. and (A~1)ay are the a'™ row and (a,b)™ element
of A=

A joint test for the overall absence of OLS bias can be based on the Wald statistic

o~ —

W = (nBias(b))'(n ' Vgias) ! (nBias(b))

W is asymptotically distributed as x2? with K d.f. under the no-bias null hypothesis. t statistics can be

obtained in the usual way to test for biases in individual elements of b.

5 Examples and Simulations

In this Section, the OLS bias and the performance of the BCs and specification tests are examined for some
simple models. The X’'X matrices cannot be singular in any of the models, so modifications like (5) are

unnecessary.

5.1 z takes only two values

Let = be a scalar, distributed as
Pr(z=1)=p and Pr(z=a)=1-p

where a > 1 and the unknown probability p satisfies 0 < p < 1. The no-intercept regression model is
y =z + v. Let 8 = 0. Departing from the conditional mean zero assumption allows E(ylz =1) = u1 #0
and E(y|lz = a) = pq # 0. Since 8 = 0, then E(zy) = pp1 + (1 — p)apa = 0, so that p, = —pu1/((1 — p)a).
5.1.1 =z =1 or z =2, each with probability .5, and n = 1 or 2

First, let n =1 and p; = 2. Then

z | E(ylz) Prob(z) 'z | E(z'y|z) | E(blx)

1 2 b 1 2 2
2 -1 b 4 -2 -5
‘ unconditional expectations: ‘ 2.5 ‘ 0 l .75 ‘

The OLS bias arises because E(b) places equal weight on the z = 1 and the z = 2 values of y, whereas
weights each y by E(zz’)~!z. Thus 3 places a higher weight than E(b) does on the higher-leverage (z = 2)

values of y.



For an example where a BC reduces the OLS bias but increases the MSE, consider n = 2 and u; = 2.

x! Prob(z) 'z | E(z'y|z) | E(blz) | E(be|x)
(1,1) .25 2 4 2 2
(1,2) .25 5 0 0 -.143
(2,1) .25 5 0 0 -.143
(2,2) .25 8 -4 -5 -5
unconditional expectations: 5 0 .375 .3035

beo, defined in (13), equals OLS when the two observed x values are equal. Although b, has a smaller
unconditional bias, it has a larger bias than b conditional on x when x; # x5. This bias correction increases
the MSE if, for example, y = E(y|z), since then the MSE is the average of the four squared conditional

means.

5.1.2 x=1lorx=a

For general values of n, p and a, exact means and MSEs can be computed for OLS and all of the BC
estimators, including the bootstrap-based one when the bootstrap sampling error is ignored. Computational
details are in Appendix A.7.

The left panel of Figure 1 plots the biases for various sample sizes. The BCs are effective unless n is very
small. The right panel plots the ratio of the square root of the MSEs (RMSEs) of the BCs to the RMSE
of OLS. They all are less than unity, showing that the BCs reduce the MSE. When the sample size is 25 or
greater, the BCs have nearly identical means and RMSEs.

5.1.3 Controlling misspecification detectability

A fixed amount of mean misspecification is more likely to be detected by specification tests when n is larger.
An OLS user might respond to evidence of misspecification by changing the regressors in order to reduce
the gap between z'8 and E(y|z). The new estimation problem probably would have a smaller OLS bias.

Suppose this detectability is not controlled for when varying coefficients in these simulations, and that
the bias is higher in situation A than B, because the mean in A is “more” misspecified than it is in B. This
finding may not be relevant. A researcher may be less likely to end up in situation A. She may be more
likely to change model A after estimating it, if its greater misspecification is easier to detect. To address
this, the non-centrality parameter (ncp) of a commonly-used specification test is used as an indicator of bias
detectability in many of the following simulations. Parameter values are calibrated to hold this ncp fixed.

In the two-z-value model of this Section, one such test is a Wald test of the restriction Sy = 0 in the
augmented model y = By + 25 + v*, allowing Var(v*|z = z(;)) to depend on z. Details are in Appendix A.8.
In Figures 2 to 7, the conditional means p; and p, are adjusted to keep the ncp fixed at nep = 5.

5.1.4 Extreme x values

In Figure 2 the larger value taken by z (called “a”) is varied, while fixing the smaller z value at unity and

adjusting p such that E(z) = 1.5 for all a. ncp = 5, and n = 15. A large value of a gives a high probability

10
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Figure 1: Biases and RMSE ratios under fixed alternative. Pr(z = 1) = .5, Pr(z = 2) = .5,
E(ylz =1) =2, E(y|z = 2) = —1, Var(y|lz = 1) = Var(ylz = 2) = 1.

that x = 1 and a low probability of a large (z = a) value of z.

At the largest plotted a value, a = 34.3, the distribution of z is extremely skewed. Then z = 1 with
probability p = .985, and x = 34.3 with probability 1 — p = .015. Since n = 15, p" = 80% of the samples
do not contain a single large-z observation, leaving no possibility of bias correction in those samples. This
explains the poor bias-removal performance of the BCs. While by,,: removes more bias than the other BCs,
it also has the largest RMSE.

5.1.5 Heteroskedasticity

Figure 3 shows the effect of heteroskedasticity by changing o2 while fixing 02 = 1. The larger x value is 3.5,
the same as in the left ends of both panels of Figure 2. The ncp is fixed at 5 and the sample size at n = 15.
When o2 is larger, more misspecification is required to result in a given ncp, causing a larger OLS bias.
The biases of the BCs also increase with o3, but remain much smaller than the OLS bias. As anticipated
in Section 3.4.2, however, the RMSEs of the BCs exceed the OLS RMSE when o2 is much larger than o%,
although this excess RMSE reaches a maximum of roughly 2% to 4%.

5.2 1 contains an intercept and a continuous variable

Let the population consist of two groups, 7 = 1,2. The distribution of the regressor z* and the conditional
expectation function E(y|z*, j) differs across groups. Group identities are not observed, and the researcher
estimates a single pooled regression. The regressor vector is z = (1 z*)’, where z* is a mixture of two random

variables x’(*l) and x’("Q). ¥ = m?j) with probability p(;y, 7 = 1, 2. x’("l) is distributed as exponential with a

11
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p is set such that E(z) = 1.5. ncp = 5, n = 15, Var(y|z = 1) = Var(y|z = larger z) = 1.
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Figure 3: Biases and RMSE ratios vs. 03. Pr(z = 1) = .8, Pr(z = 3.5) = .2, ncp = 5, n = 15,

Var(ylz = 1) = 1.
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*

mean of one, and Ty is exponential with mean a, a > 1. The probability that an observation belongs to

group 1 given z, is

paye” ™
paye" + e/

Pr(j = l|z) =

The expectation of y conditional on z and group j is E(y|z,j) = a + 2*f(;). Then the conditional mean of
yis E(y|z) = E(ylz,j = 1) Pr(j = 1|z) + E(y|z,j = 2) Pr(j = 2|z). Let Var(y|z,j) = 1 until Section 5.2.2.
The model is

yi = [1 27]B + v
where 3 = (Ezz') "1 Exy.

Figure 4 shows the difference between E(y|z) and the linear projection 2’3 when p(;) = .8, p(2) = .2, and

a = 3.5. The (scaled) density of z* also is shown.

3.86

--- E(y|x") linear projn - density of x* =

2.86
2.36

.
3.36 E
|

> 1.86
1.36
0.86 |
0.36 |
-0.14

Figure 4: E(y|x), 2’3, and the scaled density of *. p(;) = .8,p(2) = .2, and a = 3.5.

Unless a = 1, the population slope coefficient, 83, does not equal the population average “effect” or
mean population response, which is E(z*’j)(%) = p)Ba) + P)B2)- If a researcher interprets 3, as
the mean population response, this is an example of what Freedman (2006, p.302) succinctly refers to as
“estimating the wrong parameter”. I will proceed nevertheless to examine the OLS bias in estimating (s.

To calibrate the detectability of the misspecification, an ncp (details in Appendix A.9) was taken from

the Wald test of § = 0 in the augmented linear regression model
yi = a+z} B + (z])%0 + error (25)

Figure 5 plots the biases and RMSE ratios against the sample size. The BCs reduce the bias, but not
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nearly as effectively as they did in the discrete-z example of Figure 1. by,0: reduces the OLS bias the most,
but it also has the highest RMSE, as it did in Figure 2. The BCs increase the MSE.

f |

I ‘

1.08 | ~¢] --——¢2 c3 - - boot

-0.01
-0.02
-0.03
-0.04 |/}

bias

005 ||
0.06 |/
-0.07
-0.08

-0.09 +—— e o e —
10 30 50 70 90

sample size sample size

Figure 5: Biases and RMSE ratios with ncp fixed equal to 5. With probability .5, regressor z is
exponential with mean = 1 and E(y|z) = 0 x z; With probability .5, z is exponential with mean
= 2 and E(y|z) = B2 X z. B is set such that ncp = 5. Var(y|z) =1 for all z.

5.2.1 Skewness in the Regressor

Figure 6 shows the effects of skewness in the z distribution by increasing the mean of the larger-mean
(4 = 2) component of the distribution of x while adjusting the p(;)’s to hold the mean of z constant at 1.5
and adjusting the §(;)’s to fix the ncp at 5. With higher skewness, the source of bias is more concentrated in
the right tail of z, and becomes harder to detect. Higher skewness then leads to a larger OLS bias because we
are holding the ncp of test (25) constant. The BCs do not remove much of the bias. Once again, bp,,: removes
the most, yet has the highest RMSE. The RMSE ratios show that the non-bootstrap BCs can provide some

RMSE reduction over OLS, but this improvement fades as the skewness becomes more extreme.

5.2.2 Heteroskedasticity

Figure 7 shows the effect of increasing heteroskedasticity by increasing the error variance of the j = 2
disturbances. As in Figure 3, the relative RMSEs of the BCs grow with the heteroskedasticity, but again
it appears to have an upper limit. The BCs provide some RMSE improvement unlike Figure 5, because in
Figure 7 there is more skewness in x. The results (not reported) are similar when the error variance depends

on z as Var(y|z*,j) = 62e“* . This requires w < 1 for finite moments.
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Figure 6: Biases and RMSE ratios vs. a, the mean of the larger-x component. With probability p,
regressor x is exponential with mean 1 and E(y|z) = 0 X z; With probability 1—p, z is exponential
with mean a = lis_—_pp and E(y|z) = B2 X z. B2 is set such that ncp = 5. Var(y|z) = 1. n = 100.

Because the F, operation is simulated, the plots in this Section are not as smooth as in previous Sections.

T used 5,000 replications and 5,000 bootstrap samples for each replication for byeo-

5.3 Specification Tests

Two tests for the presence of OLS bias are examined here by simulating the model of Section 5.2. One (“z?")
is a ¢ test for the significance of 6 in y; = o + 2751 + ()%0 + u; using the basic unweighted HCCME.
The other (“direct”) is the Wald significance test for bias in the OLS estimator of the z} coefficient in
yi = [1 x¥]B + v; using the bias estimator and its variance given in Section 4. The z? test is easier to
compute with standard software, while the direct test should have higher power in large samples. For this
comparison, p = .9, a = 6, and 0'% = Jg = 1.

Figure 8 shows the sizes of these two tests at the 5% nominal significance level as a function of the square
root of the sample size. Although both tests over-reject, the direct test is reasonably close to its nominal
size.

In the left panel of Figure 9, size-corrected powers of these tests are shown against the square root of
the sample size, with the ncp fixed at 40. To facilitate power comparisons, size-corrected 5% critical values
based on null-hypothesis simulations were used. At small sample sizes, the z2 test has higher power, but the
direct test has higher power for larger n.

The right panel of Figure 9 shows size-corrected powers as a function of the square root of the ncp, with

the sample size fixed at n = 1000. With a small ncp, the 22 test has higher power, while the direct test has
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Figure 7: Biases and RMSE ratios vs. 02 = Var(y|z,j = 2). Var(y|z,j = 1) = 1. With probability
.75, regressor z is exponential with mean 1 and E(y|z) = 0 x z; With probability .25, = is

exponential with mean a = lis%pp =3 and E(y|z) = B2 X z. (B2 is set such that ncp = 5. n = 100.
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Figure 8: Rejection Rates vs. square root of sample size under null hypothesis of no OLS bias.
Nominal size = 5%. Var(y|z,7 = 1) = 1. With probability .9 (.1), the regressor z is exponential
with mean 1 (6).
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higher power when ncp is larger.

o
o)
o
ey

¢
LY
rejection rate

g
o

o
S

— A== direct

o
[\+]

bt

(V]

5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10
sqrt(sample size) sqrt(ncp)

Figure 9: Rejection Rates vs. square root of sample size (left panel) and vs. square root of ncp (right
panel). Tests are size-corrected to size = 5%. Var(y|z,j = 1) = 1. With probability .9 (.1), the
regressor z is exponential with mean 1 (6). Left panel: ncp = 40. Right panel: n = 1000.

6 Empirical Example

Linear regressions similar to those reported in Crossley and Lu (2004) (CL) are reported here. Their sample
contains 1158 single-person households and 915 childless-couple households. All individuals are working full
time and between the ages of 25 and 55. It is taken from the 1992 and 1996 Canadian Food Expenditure
Surveys and was kindly supplied by the authors. CL use linear regressions to examine differences between
single and couple household spending on food and food ingredients. When combined with predictions from
microeconomic models of household expenditure and other empirical results, these regressions shed light on
the presence of economies of scale in home production, and on the relation between household size, food
expenditure, and food consumption.

Four linear regressions are estimated. The four dependent variables are (1) Food (purchased from store)
budget share (2) Ratio of expenditure on prepared food to expenditure on ingredients (3) Ratio of expenditure
on take-out fast-food to expenditure on ingredients, and (4) Ingredients budget share. The same regressors
appear in each equation. The two key regressors are the couples dummy variable and the log of household
income per person (LY below). The other regressors are the age of the household head, and dummies for
sex of household head, education (four dummies) of the household head, as well as season (three dummies)
and region (four dummies). A constant term is included.

CL check their specification by testing the significance of the square of the income variable and inspect
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nonlinear regressions of these dependent variables on household income, done separately for the single and
couple households. Their theoretical model predicts that the coefficient of the couple dummy will be negative
in the first three regressions and positive in the fourth.

There are several reasons to expect the OLS bias to be small. First, the sample size is fairly large at
n = 2073. Second, CL carried out the model specification tests already mentioned. Third, the results of
Section 3.4.2 suggest a larger bias may be expected when there are extreme-valued regressors or high-leverage
observations. In this regressor set, the highest value of the commonly-used leverage measure p;;/ (%), is only
3.87. The two regressors that are not dummy variables are LY and age, and age ranges from 25 to 55, while

LY has less kurtosis than does a Gaussian random variable (1.81 < 3).

Table 1: Bias-Corrected Estimates

dependent variable | OLS (st.err) | BC1 | BC2 | BC3 [ B-boot |

coeflicient estimate on couple dummy x 100
Food (purchased from store) bud- | -1.236 (0.295) | -1.246 | -1.246 | -1.247 | -1.246

get share

Ratio of prepared food to ingre- | -9.078 (2.610) | -9.080 | -9.080 | -9.080 | -9.083
dients

Ratio of take-out fast-food to in- | -11.549 (3.259) | -11.541 | -11.541 | -11.540 | -11.542
gredients

Ingredients budget share -0.832 (0.248) | -0.840 | -0.840 | -0.840 | -0.840

coefficient estimate on LY x 100
Food (purchased from store) bud- | -10.129 (2.056) | -10.180 | -10.179 | -10.180 | -10.183

get share

Ratio of prepared food to ingre- | 0.710 (3.262) 0.746 0.746 0.748 0.753
dients

Ratio of take-out fast-food to in- | 11.988 (3.765) | 11.907 | 11.909 | 11.902 | 11.911
gredients

Ingredients budget share -8.206 (1.621) | -8.250 | -8.250 | -8.251 | -8.250

Table 1 reports the estimated coefficients on the couple dummy and the LY variable. The OLS estimates
differ a bit from CL because they used sampling weights and a slightly different sample. The difference
between OLS and the BCs is always much smaller than the OLS standard error. The OLS variance was
estimated using Stata’s “robust” option, which is Davidson and MacKinnon’s (1993, p.554) HC,. The
OLS biases indeed appear to be very small. When only B = 10,000 bootstrap replications were used, the
bootstrap sampling errors were large compared to the differences between the BCs, so B = 500, 000 bootstrap
replications are used for by,ot.

Table 2 reports tests for the existence of OLS bias using the test procedure described in Section 4. The
estimated biases are scaled up by multiplying by the sample size. They are not statistically significant at
the 5% level. Neither are any of the four Wald statistics, which test the joint null hypothesis that none of

the OLS estimates in an equation are biased. OLS bias is not a concern in this application.
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Table 2: Direct Bias Tests

dependent variable

| nx estimated bias | standard error | asymptotic ¢-ratio |

couple dummy

Food (purchased from store) budget share 0.200 0.142 1.410
Ratio of prepared food to ingredients 0.039 0.191 0.203
Ratio of take-out fast-food to ingredients -0.174 0.120 -1.451
Ingredients budget share 0.151 0.109 1.387

log of household income per person (LY')

Food (purchased from store) budget share 1.045 1.368 0.764
Ratio of prepared food to ingredients -0.756 0.548 -1.379
Ratio of take-out fast-food to ingredients 1.673 1.031 1.622
Ingredients budget share 0.913 1.030 0.887
Wald statistic (joint test) (P-value)
Food (purchased from store) budget share 10.64 (.8314)
Ratio of prepared food to ingredients 11.36 (.7867)
Ratio of take-out fast-food to ingredients 13.13 (.6632)
Ingredients budget share 10.56 (.8360)

7 Remarks

1. The bias approximation (9) is captured by the first right-hand side term of Proposition 3.2 of Rilstone
et al. (1996) and the By term of Newey and Smith’s (2004) equation (4.3). Notation is compared in the
following table.

‘ Newey and Smith ‘ Rilstone et al. ‘ Section 2 ‘
gi i zi(yi — iB) = ziv;
G; Vai — ;T
G Vg, —A
a Hy 0
b A0, AT
H Q —A-1
Vi —(ziz; — A)
d; —A g,
HE[G;Hg;] Q(Vidy) —~A71Ex(z' A tz)v

Rilstone et al.
GEL estimation techniques in a more general setting. Newey and Smith (2004, p.233) present a bias

are concerned with nonlinear estimators, while Newey and Smith compare GMM and

correction for GMM estimators. The non-zero part of their result for OLS bias correction purposes is, in
their notation, —H S C;’Z’(ZJ? /n, which equals (nBias(b))/n from equation (10) of the present paper.

2. If it is assumed that the N finite-population members themselves have been independently drawn from a

superpopulation satisfying the above assumptions, then 3 is the superpopulation regression coefficient, and
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the expectations in (1) are taken with respect to the distribution of (z,y) in the superpopulation. Then

the id assumption is appropriate for sampling without replacement (SWOR) from this finite population.
B differs from the census regression coefficient Scgn, which is the OLS coefficient applied to the IV

population members.

Now suppose the parameter of interest is Sopn instead of 5. For the approximations in this paper to
apply to OLS estimation of Bcgpny with SWOR, (n?/N) — 0 is required. To see this, consider A, in
(7). The sample is drawn from a finite population (z,,y,), r = 1,..., N, where y, = z/.8cgn + v., and
Epzv=N"1 Zivzl z,v, = 0, where Ep denotes expectation under SWOR with finite V. To simplify, let

z; = z; and z; be scalar. The leading O(n~!) term in the MSE expansions involves the term

EpA?, =n~? Z(Epzfvf) +n7? ZEP(Zi’Ui x E(zjvj|zv;))
i ij

SWOR implies Ep(z;v;|z;v;) = —2;v;/(IN — 1) when i # j, therefore

EsA2 — p-1 2,2 -2 " —ZiVi
pPAZ, n "Epz“v  +n ‘E‘Ep(zv X(N—l))
i#]
Epz?v?
-1 2,2 -2 P
= E — ==
n~ Epz“v® —n"*n(n —1) N 1
_ n(n —1)
= n I_EPZZU2 - (m) _EPZZ'U2 (26)

Under SWOR, the last term must be o(n=2) for this paper’s O(n~2) MSE approximations to remain

%) — 0, or (n?/N) — 0. (A first-order approximation only would require

(n/N) — 0.) Therefore in large samples, an extremely large N may be needed for these iid-based O(n~2)

valid. This requires n?((

MSE results to be applicable to SWOR-based estimation of a census regression coefficient. With id
sampling, F(z;v;|z;v;) = 0 when i # j, and the last term of (26) disappears.

. MacKinnon and Smith (1998) consider bias corrections and their effects on the MSE for a general class of
models and estimators. They assume that the distribution generating the data is known up to an unknown
parameter. Their bias corrections may reduce or increase the MSE, as do the corrections in this paper.
It follows that bias corrections that tackle both sources of bias, such as Newey and Smith’s (2004), share
this property.

. The weighted OLS versions of bias correction, b.o and b.3 defined in (13) and (14), show that the corrections
make the estimator more sensitive to high-leverage observations. As the example in Section 5.1 shows, the
bias is caused by a tendency for OLS to place a lower weight on this class of observation than it receives
in the corresponding population regression that defines 8. Many robust regression estimators weight in
the opposite direction, and are estimating a parameter that also places a lower weight on high-leverage

population members, than does .

While on the topic of weighted least squares, note that GLS versions of WLS are not consistent estimators
of 8 with conditional mean misspecification, because of correlations between v and functions of x like those

that cause the OLS bias studied in this paper. Boothe and MacKinnon (1988) provide a misspecification
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test based on this fact.

5. When conditional mean misspecification is concentrated at the tail values of skewed regressor variables
that have thick-tailed distributions, the bias is large, and the corrections do not work well. Unfortunately
this is a familiar characteristic of corrections based on asymptotic expansions. Phillips and Park (1988,
p.1066) write that Edgeworth corrections “tend to work well when the error on the crude asymptotic is
small (when they are least needed) and are poor when the error is large (when they are most needed)”.
Some consolation may be found in their next remark, that these corrections “still provide a valuable source

of information about the adequacy of asymptotic theory”.

A simple but unambitious remedy to this bias problem is to redefine the parameter of interest as Sx =
(>, zixi) ™t S, % E(y|zi), assuming that Y, z;z} is invertible. ’Bx is the minimum-MSE linear approx-
imation to E(y|r) when the expectation Ex((E(y|z) — 2/3*)?) is taken with respect to the empirical

distribution of the x;’s instead of the population distribution of . b is an unbiased estimator of Bx.

6. The finite-sample behaviour of tests and confidence intervals concerning 8 have not been studied here. The
shape of the distribution of y given z, f(y|z), becomes relevant, not just the first two moments. Although
the methods of this paper can be extended to obtain bias-corrected estimators of Var(b) or Var(b.), the
results of Davidson and Flachaire (2001) and Flachaire (2005) suggest that accounting for features of
f(y|z) by bootstrapping is more useful for improving inference than is correcting biases in the variance

estimators.

Since the bias and bias corrections of this paper take place at the Op(n’l) level, the asymptotic validity
of the standard HCCMEs designed for the O,(n~'/2) part of OLS still are applicable.

7. The bias results for equal-probability random sampling assumption made throughout this paper could be
extended in a straightforward fashion to variable probability sampling and standard stratified sampling,
based on the asymptotic theory contained in Wooldridge (1999, 2001).

8 Summary

The O(n~!) bias and O(n~2) MSE of OLS is derived under iid sampling. A modification to OLS is suggested
to handle the problem of nonexistent finite sample moments. Bias corrections based on plug-in, weighting,
jackknife and pairs bootstrap methods, are equal to Op(n_3/ 2). Sometimes they are effective at lowering
bias and MSE, but not always.

For the results to be applicable to census regression coefficient estimation in a finite population of size
N using sampling without replacement, the condition n?/N — 0 is required. Similarly, in order for the
sampling error of a bootstrap bias correction to belong in the remainder term of the expansion, n?/B — 0
is required, where B is the number of bootstrap replications. When n is large, these requirements on N and
B may be considerable.

In the simulations, the bootstrap correction removes more bias than the others, but has a higher MSE.
Exact means and MSEs are given for the single binary regressor case. Parameters are calibrated in an effort

to hold constant the detectability of the misspecification across specifications.
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A test is given for the O(n~1) OLS bias. In a simulation it has a power advantage over a mean misspec-
ification test at higher sample sizes and larger biases.
When these techniques are applied to survey data on food expenditure, the estimated bias is very small

and statistically insignificant.
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A Appendix

A.1 Proof of Theorem 1(a)

Let the random variable g = 1 if )q(fl) < 7, and g = 0 otherwise. An a subscript denotes the a*" element

of a vector. Then

E(Mbia) = E(9)E(bhlg=1)+E(1 - g)E(b;lg =0)
< max(E(b%,lg = 1), E(b2|g = 0)) since 0 < E(g) < 1

E(b%,]g = 1) is finite by construction. It is left to show that E(b2|g = 0) is finite. Let

K
A = Z)\kckcz (27)
k=1
where A\; and ¢, k = 1,..., K, are the eigenvalues and eigenvectors of A If g = 0, then \; > 7 for all k.

Defining w = n~' Y, z;y;, then
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K K
B =0) = B[S eneu ) (Sreudta)
Jj=1 k=1

= EY A cjacka(djw) (chw)

ik

< EY I Ieiallerallcjwl|ciwl
ik

<

K? H}%XEIAJ-_III/\lelcja\@lléwllcw\

g = 0 implies |)\]~_1| < 77! and cjcj = 1 implies |cjq| < 1. Therefore

E(bz]g = 0)

IN

K% ? max E(c'w)?

< K2%72 max Ew]2
J

max; Ewj = max; E(n~' Y, z; jyi)? = max;(n ' E(z}y*) + (1 — n~')E(z;y)?), where z; refers to the jth
element of the random vector x. E(z3y*) (hence E(z;y)?)) is assumed finite, therefore E(b3|g = 0) and
E(b%,,) are finite.

A.2 Proof of Theorem 1(b)

by = gbr+(1—g)b =b+g(br—b) = b+gx O(1), where g is defined at the beginning of the proof of Theorem
1(a). A sufficient condition for bys = b + 0,(n3/2) is g = 0,(n~3/2), or Prob(A;(A) < 7) = 0+ 0,(n=3/2).
The proof below is similar to the proof of Lemma 2 of Liu and Singh (1992, p.383).

Since A1 (A) > 7, the event A1(A) < 7 can be written as A1 (A4) — A1(A) < —d for a positive d bounded
away from zero. Let vec(A) and vec(A) be the K(K — 1)/2 element vectors of distinct elements of the
symmetric matrices A and A. Let a; and d; be the j'* elements of vec(4) and vec(A). Then a; — a; =
n Y (zikwie — Exiwig) where j = 1,..., K(K+1)/2 indexes (k,{) combinations. Let G = .z — Ex;,Ti

and G =d; —a; =n1 > i (@ikzie — Exipxye). From Baum and Katz (1965, p.113),

E(G)=0and E|G|' <00 = n' 'Prob(|G| >¢€) — 0 for all ¢ >0
The assumption of finite moments of order 5 in z implies E|G|* < oo for t = 2. Therefore

ng_lProb(|&j —aj|>€)—>0foralle>0 (28)
When \;(A) is a single root, it is a smooth real-valued function of A with all derivatives (Magnus and

Neudecker (1988, Theorem 7, p.158)). Choose € in (28) to be small enough that these derivatives exist over

(a; — €,a; + €) for each j, and small enough that e < d*, where d* = d x (max; |%§A)|). Let a} be some
3
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scalar that lies between a; and a;. Then the vector mean value theorem gives

Prob()\l(fl)<7> - Prob()\l(A) Xi(A) < d)
= Prob KZ O ) a; —aj;) < —d*

@;
Oa;

< Prob <K2max’a)\al—(A)max|a’; —aj| > d*)
i J

aj
< Prob <max laj —a;| > d**)
j
< ZProb (laj — a;| > d**)
J
< K?maxProb (|a} — a;| > d**) (29)
j

where d** = d* /(K? max; \6%‘(:‘”) is bounded away from zero. Letting € in (28) equal d**, the probabilities
n (29) are o(n=3/2). Hence

Prob (/\1(/1) < r) <0+ o(n"%?)

A.3 Proof of Theorem 2

Following the proof of Theorem 1(a) and its notation, it is sufficient for Theorem 2(a) to show that E(b%, ,|g =
0) and E (b3, 4|9 = 0) are finite. For be1 4, since E(b7|g = 0) is finite from Theorem 1(a), it is enough to
show that E((be1,o — ba)?|g = 0) is finite. Using (11) and (27),

~1
bcl,a by = Z A7 C]ac Z xzpuel
K
npi = xi(n! szm;) =zl Z)‘k CkCh)T Z)\ Y(cz;)? and
i k=1

K

& = yi—azb=yi— wé(z A teecp)w = i = Y0 N () (cjw)

£=1 =1

where w = n~1 Y, 2;y;. Therefore

K
— Z )\j_lcjuc; < 12962 ) (yi — /\Zl(cjgxi)(czw))>

jke=1

bcl,a - ba

—n Y Y AN alcai) (i) Py — AT A e (i) (chas) (chw)
i\ gkl

E(be1,q — bs)? can be shown to be finite when g = 0 following steps similar to the last part of the proof of
Theorem 1(a). The A~!’s and elements of the ¢’s are bounded. The above expression has (z3y) and (z3w)

or (z*y) terms, so the expectation of its square is finite if the (z%y?) moments are finite.
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Turning to the finiteness of E (b7

boot,a

|g = 0), it is enough to show that E((bp 4)?|g = 0) is finite. Writing

bp,q as

B

EB,a = B_l Z(bagf + bBl,a(l - gl))
=1

where go = 1 if \i(n™' Y, z2);) < 7 and gy = 0 otherwise, and noting that E(b2|g = 0, g, = 1) is finite,
then it is enough to show that E((bpsq)%|g = 0, ge = 0) is finite. This follows from Theorem 1(a), with bps 4
replacing b,, g¢ = 0 replacing g = 0, and the pairs bootstrap sampling being a special case of #id-population
sampling which satisfies the finite- E(z2y?) moment condition. This completes the proof of Theorem 2(a).

Using the same argument as the first paragraph of the proof of Theorem 1(b), then Theorem 2(b) holds
if Prob(A\1(A) < 7) = 0+ 0,(n~3/2). That result also is contained in Theorem 1(b).

A.4 Proof of Theorem 3

First, pairwise comparisons are used to show the O,(n~%/2) equivalence of all of the BCs. Then an O(n~3/2)
expansion for H1b.; is derived. Given their O(n’?’/ 2) equivalence, it also applies to the other BCs.

Comparing b.; and bz, from (11),

(Z zizy) Z zi(yi + pii(yi — }b))

= (zl: zxh) ! XZ: ziyi (1 + pis) — (Z xzx;)fl(z TTipii )b

= (Z i) sz‘yi(l + pii) — (Z wimg)_l(z z;2pii) (ber + Op(n™1))
= (i i)~ i 2y (1 + pii) — (i mixg)_l(i ;255 )ber + Op(n™?)

bcl

Grouping the b.; terms, then
O za) O i+ pi)ba = O @@) ™Y @iyi(1+ pii) + Op(n?)
(Z z;xy(1+ pii))ber = Z 2y (1 + pis) + Op(n™1)
Therefore
by = (Z ziw(1+pii)) Z z;yi (1 + pii) + Op(n™?)
b Op(n™?) |

Next, compare b.o and b.3. Since p;; is Op(n~1), then 1+ p;; = (1 — pi;) ™! + Op(n~2). Therefore
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bey = (Z zizi(1 +pii))_lzxiyi(1 + pis)
= Z zxh (1 —pi) ™t + -1 Z ziyi (1 — pii) ™' + Op(n7?))
= Z zixh(1—pi) "t + Zmzyz —pii) "+ Op(nh)
= Z zixh(1—py)~ 7! Z ziyi(1 —pii) "'+ Op(n™1))
= Zw 2i(1 - pii)~ szyzf pii) '+ 0p(n7?)
= bes +Op(n?)
Next, consider the standard jackknife estimator defined in (15).
bjack = b+(n—1)n sz Z (1= pii) 'wies
(1—n~ Zx ) 1Zaciei(l—I-pii—1-0,,(71_2))
(1-n~ Zm x}) >:0+ O zixl) ™D mipiiei + Op(n?)
b+ lew, - Zwipiiei +0p(n7?)

= b+ op(n73/2)

Finally, consider bpoo:. It uses OLS estimates from the bootstrap samples,

b =b+ (Z :c[j:czj)_l ngjegj, {=1,...,B

j=1
where invertibility of Z?:l TyjT) ; is ensured by the truncation rule used in defining bpg ps. Then

bbnot -b = (b_ (BB _b)) —b

B
= B! Z(b — bpe) + 0,(n"3/?)
=1
B

= -B! Z(Z xgjac}j)_l Z Tyjep; + Op(n_S/Q)
j=1

=1 j=1

= —-B7! Z (/1 + (A, — fl)>_1 n1 ngjezj + 0,(n7%/?)
£ J
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B 12(,4— WA, — DA + 0y 1/2) Ierjeg,Jrop 812
AN BTYY Y Jwjer) + AT (n T BT IZZ — A aer;)
L
BTy 0p(n72)(Y aejer;) +op<n-3/2> (30)
[/ J

The first term of (30) is O,(B~'/?2n~1/2), and is non-zero due to bootstrap sampling error. Tn order to force

it into the o,(n~%/2) remainder, B must satisfy
B2 Y245 o(n™%?) = B7Y?2iso(n"') = B liso(n?)

This assumption is made in the Theorem.
The third term of (30) is O,(B~'n"2) x 0,(n"/2) x O(B'/?n'/?) = 0,(n"2B~1/2) = o(n=3/2). Tt also
belongs in the remainder.
The second term of (30) is Op(n~!). The large-B condition is sufficient to replace the bootstrap average,
-1 Zle, by the bootstrap expectation, Fpg, based on sampling with replacement from the observations

(xiayi)a i:]-’---an

bboot — b “(n"'B” 122 — A) A zyje05) + 0p(n3/?)
= A'(n'B7! Z Z AgA Y zyje0 —n B! Z Z zejen;) + 0p(n"%?)
L 3 L j
= A'n7BTYY Y Y el A wger) + o, (n”?)
¢ Gk

= A '(n?B! Z Z ey A zje07) + 0p(n3/?)
¢

J

= Aln 71(E313[j1,‘/£j12171$gj62j)+0p(n73/2)
= A7t _QZxacA 1zie; + 0,(n"/?)

= A_ln_l Z T;pii€; + op(n_g/z)

i

= (b — b) + 0p(n7/?)

These equivalences mean that an O(n~3/2) expansion for any one of the BCs will apply to the others.

An expansion for H™1b.; is obtained next, where
H '%, = H'b+H! sz 1Z$ipii€i

= H'%+H! (Z(H’)* zizéHfl)flz(H/)flzipiiei

i

H'b+ () zi2) 'Y zipiie (31)
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Substitute the following two results,

yi — 2 H b
yi — Zi(H'B+ (H 'b— H'p))
v — 21 AL, + op(n_l/z) (32)

€

and
pi = () mial) la;
i
= zl'-H_l(Z(H')_lzing_l)_l(H')_lzi
= z;(z zl;:)_lzl
= nfl;g(nflzzizé)flzi
i

= n LI+ AL) (33)
= n7 (I - AL+ 0,(n7Y?))z

= n 2y —nTlZALL s + op(n73/2) (34)
into (31),
H™ ' — H™'b
= (I-A..+oy(nV?)n! Z zi(n iz — n T 2l ALz 4 0,(nT32)) (v — 21 AL, + 0, (nTY?))
= n Z 2i%2ivi + n_Q(_Az: Z 2i2;20; — Z 22\, 2V — Z ziz2h 220 A sy) + 0, (n7?)

= nly+n (A, ALy —n? Z zi(Z0 A 2)vi — ALy + 0, (n/?) (35)
where A, = n™1 3", (2:202;v; — 7). (35) also applies to the other BCs, given the above O(n~3/2) equivalences.

A.5 Proof of Theorem 4

MSE(H™'b) = EH 'b-H 'B)(H 'v—H'p)
= EszAlzv - E(AZUA;q;Azz + AzzszA,zv)
+ B(A DAL A + AL AL AL + A2 ALAL) +o(n™?) (36)

Most of the expectations in (36) simplify from cross-product terms having zero expectation due to indepen-

dence and from A, and A,, having mean zero.
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(i) The expectation of the first term is
EALLAL, =n1Ez'v? = Qe
(ii) For expectations of the next two terms in (36) note that the only nonzero terms in

BALALAL, =n*EY (2i2) — T)(2v;) (4ve)
ijk

occur when i = k = j. Therefore

EAL.ALA, = n2E(z7 —I)(2v)(2'v)
n~2(E(22'22'v*) — E(z2'v?))

(2 — Qy2)

The matrices ,/,,2 and 2,2 are symmetric, therefore
EALAL A, =1 3Dy — Qy2)
(iii) The O(n~2) terms in

EAzzszA,lszzz = n_4E Z(zlzi - I) (Z]"Uj)(z;c’l)k)(Z[ZZ - I)
ikt

occur when terms are summed according to (i = j,k =¥), (i =k,j7 =¥{), and (i = ¢,j = k).
The (i = 7,k = £) sum is

n~E Z(zzz: — I)(zv;)(zpor) (ze2), — 1) n~2(E(z2' — I)(2v))(E(z2' — I)(2v)) + o(n™?)
= n7%yy +o(n7?)

The (i = k,j = {) sum is
n By (zi2) — I)(2v;) (2jvi) (22 — T)
ij

= 4EZ zi2;)(2jv5) (zivi) (2525 — I) — 4EZ zjv;)(zjvi) (252 — T)

ij

_4EZ 2i2;) (205) (24vi) (225 — I) + o(n™?)

4EZ zi2;)(2jv5) (z{vi) (2;25) — 4EZ 2;20) (20;) (z0v;) + o(n™2)

7]

= 4EZ zi2;) (2v5) (2}vi) (2;25) + o(n™?)

n~*E Z 2i2;) (205) (2jvizj) 2 + o(n™?)
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K
= n'E Z(zizg)izjvj )(Z ZiaViZja) %y + o(n™?)
j

a=1

K
= n'E Z Z(zizgzmvi)(zjz;zjavj) +o(n™?)

a=1 1ij
K
= n7?) 0, +o(n7?)
a=1
The (i =4,j = k) sum is
n By (22 — I)(205) (2jv;) (22} = T)
if
= n’FE Z(zlz: — Q2 (22, — I) + 0o(n™?)

= n%FE Z(zizg)ﬂvz (22)) —n3E Z Q2(22)) —n3E Z(zlz:)sz +n%E Z Q.2 + o(n™?)
= n2E22 (¢ Qp22) — 072 — 07202 + 172, +o(n?)

— n_QQZ/QvM —n72Q2 +o(n"?)

Grouping these sums gives
K
BALALALA =02 (9 + )92, 4 Qua e — Q2) +0(n?)
a=1

(iv) The O(n~2) part of

EAAL A2 =n"*FE Z(z,v,)(z;v])(zkz; —I)(zezy — 1)
ijkt
is contained in the (i = j,k=1¢), (i=k,j ={), and (i = {,j = k) terms.
The (i = 7,k = £) sum is

nE Z(zmz)(z;vl)(zszc —D(zzy —I) = n 2(Ez2v?)(Ez2'(2'2) =1 -1+ 1)+ o(n"?)
ik
= 17202 (. —I) +o(n?)

The (i = k,j = £) sum is

n‘E Z(zlv,)(z;v])(zlz; —I)(z2; — 1)
n'E Z(Zivi)(Z;'vj)(zizﬁ)(zjzﬁ') +o(n™?)

n*E Z(zzvl)(z;vjzl)(z;zj)z; +o(n™?)
ij
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ij

n*E Z(zi(zgvizj)zj)z;vj +o(n™?)

K
= n72 Z Qiav +o(n™?)
a=1

The (i =¢,7 = k) sum is

mZ(zlv,)(z;vj)(zJZ; —I)(ziz; — I)

ij

ij

n~4E Z(zlvl)(z;vj)(zjz;)(zlz;) +o(n™?)

= n‘E Z(zlvl)(z;vjzj)(z;z,)z: +o(n™?)

ij

ij

n*E Z zi2vi(2{2;) 252jv; + o(n™?)

K
= n? Z Q..vYa +0(n7?)

a=1

where v, = Ez'2vz, is the a! element of y. Grouping these sums gives

K K
EAZ’UAIszzz = TL72(sz (Qz’z - I) + Z an,v + Z Qz,,,v')/a) + O(TL72)
a=1

and

a=1

K K
EAZALAL, =072 ((Q: — D2+ > Q2 + > Qvya) +o(n?)
a=1

a=1

Result (17) follows from substituting expectations (i) to (iv) into (36) and simplifying.
For the MSE of H1b,, use

MSE(H " 'b,.)

E(H b, —H™'8)(H ‘b, — H B

E((H ‘b, — H'b) + (H b — H'B8))(H 'b. — H'b) + (H b — H™'B))’
E(H ‘b, — H ') (H ', — H'b) + E(H 'b. — H'b)(H o — H'p)’
+EH - H ') (H b, — H 'b) + MSE(H'b) (37)

MSE(H~1b) is given by (17). From (35), E(H ‘b, — H='b)(H ‘b, — H~1b)' = n=2v9' + o(n=2). The
remaining expectations in (37), E(H ~'b.— H~1b)(H 'b— H~13)’ and its transpose, require five expectations
of products of terms that appear in (35) and (7). These are

En_I’Y(_Azzsz)l = _n_Q’Y’.}/
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En"'ALAL, = n_3EZ(ziz£ziv,~—'y)z‘;~vj

= n_2Qz/zv2

—En"'A.NAL, = n*3EZ(ziz§fI)7)z;-'uj
= —n2Ez(¢'v)Zv

K
= —n7?) Bz(2)za7

a=1

K
—2
= —n E Qzav')/a
a=1

—En~2 Zzz(z A,.z)vAL, = n72EZzlvl (2iA.2:)

i

—4
= n EE zivizjvj(zizkzkzi—zizi)
ijk

_ -4 ! / /. /.

= n*F E 202305 (21252521 — 2i%3)
ij

_ —4 vl oy (s )2

= n°E E 202305 (2;25)

ij

K
—4 ! !
= n *F g g 22 (ViZia2jaVj) % %

17 a=1

= _QZQ% + 0p(n7?)

—E’I’L_IQZIZAZUAIZU == _n_2Qz’sz2

(18) follows from substituting these expectations into (37).

A.6 Proof of Theorem 5

—

To estimate the variance of nBias(b), reparametrize and expand using (32) and (34).

—

nBias(b) = —A"n "1 Z zi(npii)ei

= —(HYI+A,)H ) Int Z (H')zi(2hzi — 20002 + 0,(n7Y2)) (05 — 21A + 0,(n1/?))
= —H({I-A,.+ op(n_l/Q))H' _1 Z 22, 2iV; — Z 22, 2i 20Dy — Zzlz A, zv;) + op(n _1/2)
= —H(I-A.)n"! Zzlz;z,vZ Z 2i2jziz Ny — 7 ZziziAzzzivi) + 0,(n"Y/?)

= —HI-AL)y+A, — QAL —¢) +op(n?)
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—Hy—H(Ay — QD —c— ALy) + op(n_1/2)
—Hy - HE 10+ op(n1/?)

where
1 = A=A —c— ALy
-1 Z
= n djia
i
/ !
Vi = 2izi7v — v — Qeazivi — ¢ — (2125 — L)y
/ !/
= 2220 — Qo220 — ¢ — 227,
and

| / /
ci=n E zjz;(2iz; — I)zjv;
J

so the a*® element of ¢; is
Cia = nt Z Zja (z}zi)ij — (z;-zj)vj)
J
= (7Y %7 zjav) % — Yo+ 0p(n?)
J
= 2002 — Ya+ 0p(n71?)
If the v¢;’s and H were known, a consistent variance estimator could be constructed as

Var(n'/?(nBias(b))) = n~" > (Hv:) (H:)' (38)

Asymptotic normality of nBiZL.s\(b) follows from the i:d assumption, Cramér-Wold device and Lindeberg-Levy
central limit theorem (White (1984, p.108)) if the variance of 1); is finite. A sufficient condition for this is
that the moments E(z%v?) are finite. Since H is fixed and nonsingular, this is the same as the moments
E(2%v?) being finite, proving part (a).

I/-IT/Ji in (24) uses the following consistent estimators of the four terms of H1;.
Hzzizivi = HH'zx,HH'z;v;
A gl A

= fl_lwi(npii)ei + 0p(1)

HQ, ziv; = H(EzZ (2'2)H zv;
= H(EH'za'HH'(2'HH'z))x;v;
= A YEzz'(2’A7'z) ANz
= A7 (Anp)A ' zie; + 0p(1)
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(Hei)a = ZHabcib
b
= ZHab(Z:'szvzi - '77)
= ZHab (2iBz2 2pv)2 ZHabE (2p(2'2)v)

= Z Hop(v}H(EH' za' H(H} x)v)H'z;) — > HuE((Hj x)(z' HH'z)v)
b

b
- x;A*(Em'«A*) 2)0)A" "z, — B A (A "), 2)v)

— Z Dapap)v)A ey — (m’A_lx(Z(A_l)abxb)v)
b b

= AT (AN ade,) A — (A7)0 A" + 0p(1)
b

Hziziy = Hziz(E(2'2)2v)
= HH'zjzHE(H'zv(x’ HH'z))
= A 'zl AT'E(’ A7 z)xv
= Azl AT+ op(1)

= @;HH'(Bxa'()  HuHjx)v)HH'z; — BE(x'HH'z(Y | HapHy. x)v)
b

The new notation is described below (24).

A.7 Computing Expectations and MSEs

Let X be the usual n x K matrix from stacking the z} vectors. The estimators each can be expressed in the
form )", f(X, x;)y;, where the K-element vector function f is

f(X, @) (X' X) "z for b
= (X'X)7! ( +pizi — (3, @ja)p;;) (X' X) 7! ) for by
= (Syemte) (L +pi) for bes
= (Z zjzi (1 —pjj)~ 1) zi(1—pj;) " for bes
= 20X = B (05 2y as) ™ Sy 2 11(85) = 1]) o b

where B is the number of bootstrap samples, ¢ indexes the bootstrap sample, j indexes the observations in
the bootstrap sample, and (£j) equals *, say, if the jth observation in the ¢** bootstrap sample is chosen to
be the (i*)*" observation in the original sample.

Let the conditional moments be E(y;|x;) = p(x;) and Var(y;|z;) = o%(z;). Then the conditional moments
are

E(B)X) Zfsz
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Var(B|X) = E ((B — E(B1X))(B - E(BIX))’IX)

E (Z FOX @) (yi — p(:)) D> F(X,25) (y; — N(%’)))

J

> HX ) f(X, i) 0% ()
The unconditional expectation is then
E(B) = Ex(E(B|X))

where F'x denotes expectation over X. The unconditional variance is

Var() = E(6 - E(8)(5 - E@®B))
= B(B- BEX)+BGIX) - B@) (8- BEX) + EGIX) - BE@)
= Bx (By(5 - E(BIX) + B(3IX) - E(8))(5 - E(BIX) + E(3|X) — E(8))'|X)
= (Bx(By(3 - E(BIX)(B - BGIX))|X)) + (Ex(B(31X) - E(3)(E(31X) - E(B)))
= Bx(Var(3)|X) + (Ex(BE(3|X) - E(B)(E(BIX) - B(@))')

Similarly,

MSE(8) = Ex (Var(8)|X) + (Ex(E(B1X) - B)(E(31X) - B )
These results can be used to approximate E(3), Var(3), and MSE(j3) by averaging across simulated X’s to

estimate the Ex operation. It is not necessary to simulate the y’s.

A.7.1 Results for Section 5.1: = takes only two values

The set of possible X’s is small enough that the bias and RMSE results can be computed directly without
simulation. Let the possible values of z be x(;) and x(5), which occur in the population and the sample with
Pr(z = x(;)) = p(j)» j = 1,2. Let the conditional means and variances of y be y ;) and 0(2].). Since the order

of observations is irrelevant, then X is fully described by n and p(;), which is the proportion of z;’s in the

sample that equal x(;). For each of the n + 1 possible values of p(;): 0, %, %, R "T_l, 1, compute conditional
moments
2
E@Blpay,n) = Y By nzi)ng (nb))
=1
12
Var(Blpay.n) = Y f(Baym ) ol (b))

=1
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where, from the definitions in Section 3.1

fBaynzig) = n tABa) e for b
= nrA(P)) gy +n 2 A(B)) (m?j) Egg;)x ) for bey

_ R L, B(p -1
= o7t (AGa) +n ' GEED)  (20) + 0T AGw) ') for be

= nlC(p) ! (x(j) /(L =t A())~ for bes

Y
= 27 AGw) e — eGP g, Pr®w by n) ABm) b for broor

where
A(Pa)) = 15(1)‘”?1)+13<2)$(22)
B(bw) = Dzl +De)T(
~ 2 N 2
A (1).’E(1) p(2)$(2)
Clpu) = + 5
. L= n~tad,) A(p) ™ L= n=taty Apw) ™
p = 1-7pq)

Since A cannot be singular in this example, bc1 = be1,ar and bpoot = bpoot,ps. The above expression for byoot

is derived later in this Section. Because of the iid sampling, p(;) follows a binomial distribution:

yeee ,1
n

2 n—1
el

S|

A n A A o
Pr(p)lpay,n) = < N > (np(1))P® (n(1 — Pp(1)))P® , Py =0,

TP(1)

For large n, computational problems were avoided by calculating these probabilities recursively using

Pr(pa) = 0lpr),n) = (1 —p))"

and

A~ _ . 1 _ﬁ p
Pr(p) +n”"lpay,m) = Pr(blpay,n) ( = ) < » >

pay+nt) \1-pa)

The moments are then computed as

E(B) = ZPrp(l B|p(1)

P(l)

Var(8) = > Pr(puy)(Var(Blpa)) + (E(Blp)) — E(B))?)
(1)

MSE(8) = Y Pr(pw)(Var(Blpw)) + (E(Blp)) — B)°)
(1)

The f(pq),n,z(;)) expression for by,.: given above follows from bp in (12) being the expectation of OLS
under iid sampling from the empirical distribution. Let ﬁ(l) be the proportion of observations in a bootstrap

sample having x;; = z(;), and compute Pr(ﬁ(l)hﬁ(l),n) in the same way as the Pr(p()|p(1),n)’s described

37



earlier. Then applying the procedure just described for b to the empirical distribution gives

E(bvootlp(1) = 1ys () = i) ZPr Py n) | Y (0 Ab)) @) inb )
P(l) J

where fi(;) = Z{ilzizz(j)} yi/(np(jy). Therefore

E(bboot [P(1) = D1)s H(j) = f(j)s ™)

= Y Pr(pwlpayn) | D (T ABa) ag))nbg) > yi/(nbg))

5(1) J {ilei==z;)}
= ZPrpu Pay,n) > (n AGBw) w0/ Bi) (D> vi)
D1 J {ilzi=z(;)}

= Y f8(pay,nz(h))vi

where fp(p(1),n, 2(j)) = 25(1) Pr(ﬁ(1)|ﬁ(1), n)n_lA(ﬁ(l))_1x(j)(1§(j)/(ﬁ(j))). Values of zero can occur in the
denominators in the computations for b.3 and by.0¢, but they always have zero-probability outcomes, so
they can be replaced with an arbitrary non-zero number. Finally, assume that the number of bootstrap
replications is large enough that the bootstrap sampling error, bg — E(bpoot Py = D1y, () = fi(j),n), can

be ignored.

A.8 The ncp used in Sections 5.1.4 and 5.1.5

Test the restriction Sy = 0 in the augmented model y = By + 8 + v* using a Wald test, allowing Var(v*|z =
:c(j)) = 012- to depend on z. Under the local alternative 3y = n~ /27 for some fixed 7, the asymptotic

distribution of this Wald statistic is noncentral x? with an ncp

72

nepy = —————
P AVar(n/23,)

where, with z(;) = 1 and z(3) = q,

_ a —
Bo=n"12r = —g;_?
AVar(n'?8y) = ((p+ (1 - p)a®)*(po? + (1 — p)o3)

—2(p+ (1 —p)a)(p+ (1 — p)a®)(poi + (1 — p)ao3)
+(poi + (1 —p)a®a3)(p+ (1 —p)a)®)/(p+ (1 —p)a® — (p+ (1 — p)a)*)?

and Bo is the OLS estimator of the intercept.
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A.9 The ncp used in Sections 5.2 and 5.3

Under the local alternative § = n—'/27 for some fixed 7, the asymptotic distribution of a heteroskedasticity-

consistent Wald statistic is noncentral y? with non-centrality parameter

72

nep = ——————
P AVar(n'/20)

where AVar(n!/20) is element (3,3) of E(Z%') " E(Z%'u®)E(Z%') ' and T = [1 z* (z*)2]' is the regressor vector
from an augmented linear regression model described earlier.  is the third element of E(ZZ') "' E(Zy). The
moment result Ez” = r!¢” for x an exponential random variable with mean ¢, lead to the moment matrices

given below. Set §; = 0 with no loss of generality.

1 Py +pP@e  2(pa) +p@)a’)
B3E = | paytpeae 200 tpee’)  6(pa) +pee®)
2(pa) +p)a?) 6(pa) +p2)a’) 24(pa) +p2)at)

ETy = p2)B2 | 2a®
6a3

Element (b, ¢) of the 3 x 3 matrix EZ7'u? is given by
E(g;*)ru2 = r!(p(l)a?l) +p(2)a(22)a7”)

where 7 = b + ¢ — 2. The size of the ncp is controlled by adjusting (3s.
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