SEDAP

A PROGRAM FOR RESEARCH ON

SOCIAL AND ECONOMIC DIMENSIONS OF AN AGING POPULATION

Income Inequality and Self-Rated Health Status: Evidence from the European Community Household Panel

> Vincent Hildebrand Philippe Van Kerm

SEDAP Research Paper No. 127

For further information about SEDAP and other papers in this series, see our web site: http://socserv2.mcmaster.ca/sedap

> Requests for further information may be addressed to: Secretary, SEDAP Research Program Kenneth Taylor Hall, Room 426 McMaster University Hamilton, Ontario, Canada L8S 4M4 FAX: 905 521 8232 e-mail: qsep@mcmaster.ca

INCOME INEQUALITY AND SELF-RATED HEALTH STATUS: EVIDENCE FROM THE EUROPEAN COMMUNITY HOUSEHOLD PANEL

Vincent Hildebrand Philippe Van Kerm

SEDAP Research Paper No. 127

February 2005

The Program for Research on Social and Economic Dimensions of an Aging Population (SEDAP) is an interdisciplinary research program centred at McMaster University with co-investigators at seventeen other universities in Canada and abroad. The SEDAP Research Paper series provides a vehicle for distributing the results of studies undertaken by those associated with the program. Authors take full responsibility for all expressions of opinion. SEDAP has been supported by the Social Sciences and Humanities Research Council since 1999, under the terms of its Major Collaborative Research Initiatives Program. Additional financial or other support is provided by the Canadian Institute for Health Information, the Canadian Institute of Actuaries, Citizenship and Immigration Canada, Indian and Northern Affairs Canada, ICES: Institute for Clinical Evaluative Sciences, IZA: Forschungsinstitut zur Zukunft der Arbeit GmbH (Institute for the Study of Labour), SFI: The Danish National Institute of Social Research, Social Development Canada, Statistics Canada, and participating universities in Canada (McMaster, Calgary, Carleton, Memorial, Montréal, New Brunswick, Queen's, Regina, Toronto, UBC, Victoria, Waterloo, Western, and York) and abroad (Copenhagen, New South Wales, University College London).

Income Inequality and Self-Rated Health Status: Evidence from the European Community Household Panel*

Vincent Hildebrand

Department of Economics, Glendon College, York University, Canada and CEPS/INSTEAD, G.-D. Luxembourg

Philippe Van Kerm

CEPS/INSTEAD, G.-D. Luxembourg

ABSTRACT

We examine the effect of income inequality on individual self-rated health status in a pooled sample of 10 member states of the European Union using longitudinal data from the European Community Household Panel (ECHP) survey. Taking advantage of the longitudinal and cross-national nature of our data, and carefully modelling the self-reported health information, we avoid several of the pitfalls suffered by earlier studies on this topic. We calculate income inequality indices measured at two standard levels of geography (NUTS-0 and NUTS-1) and find consistent evidence that income inequality is negatively related to self-rate health status in the European Union for both men and women. However, despite its statistical significance, the magnitude of the impact on inequality on health is small.

JEL Classification: D63, I12, I18 Key Words: Self-rated health; Income inquality; European Union; Panel data.

Inégalité Des Revenus Et Santé Subjective: Résultats Du Panel Communautaire Des Ménages

RÉSUMÉ

Nous examinons l'effet de l'inégalité des revenus sur la santé subjective dans 10 états membres de l'Union Européenne à partir des données longitudinales du Panel Communautaire des Ménages (ECHP). Capitalisant sur la nature transnationale et longitudinale de nos données, et modélisant rigoureusement notre variable de santé subjective, nous évitons plusieurs écueils dont ont souffert un grand nombre d'études antérieures ayant examiné cette question. Nous calculons nos indices d'inégalité en considérant deux niveaux standards d'agrégation géographique (NUTS-0 et NUTS-1) et mettons en évidence l'existence d'une association négative entre l'inégalité des revenus et la santé subjective parmi les hommes et les femmes résidant dans l'Union Européenne. Cependant, malgré que l'on ne puisse pas rejeter l'existence statistique de cette association, l'ampleur cette dernière est néanmoins très modeste.

Classification JEL: D63, I12, I18 Mots clés: Santé subjective, Inégalité des revenus, Union-Européenne, données de Panel.

1 Introduction

Numerous studies have reported the existence of an association between the level of income inequality in a population and aggregate health outcomes: average health among people living in high-inequality areas appears to be lower than their counterparts living in low-inequality areas. A statistically significant relationship has been reported using aggregate (macro-level) data both across countries (Rodgers, 1979; Wilkinson, 1992) and across regions within countries (Kawachi and Kennedy, 1997; Lynch et al., 1998). This observation has lead researchers to argue that increasing income dispersion directly translates into poor health, thereby suggesting additional welfare gains from more progressive income redistribution policies. This argument is embodied in Wilkinson's (1996) controversial 'income inequality hypothesis' (IIH) which posits that the primary determinant of differences in health performance among developed countries is the extent of differences in the disparity between the incomes of the rich and the poor within countries rather than differences in income levels.¹

Recent studies have however cast doubts on the robustness of this 'ecological' association to model specifications and questioned the comparability of data sources both across countries (Judge et al., 1998; Gravelle, 1998; Gravelle et al., 2002) and across U.S. States (Mellor and Milyo, 2001). Furthermore, Rodgers (1979), and more recently Gravelle (1998) and Gravelle et al. (2002), cautioned that this apparent causal relationship may just be a statistical artefact if individual health is a non-linear function of income.² In order to identify the effect of income inequality on health, one needs to turn to individual-level data and to control for relevant confounders, in particular individual income. A number of recent studies have taken this approach, and the new evidence about an association between health and income inequality is mixed at best. The majority of studies based on individual-level data have focused on the United States.³ Kennedy et al. (1998) and Mellor and Milyo (2002) found that state-level income inequality significantly affects self-reported health status even after controlling for individual incomes and other demographic variables. However, Mellor and Milyo (2002) report that this association is no longer significant after controlling for regional fixed effects that take differences in diet, lifestyle and access to medical care into account. In fact, the finding that state-level inequality is detrimental to self-rated health is not robust to alternative health outcomes or different levels of aggregation. For instance, Daly et al. (1998) found very weak evidence that state-level income inequality translates into increased mortality. Furthermore, unlike Kawachi et al. (1997) and Lynch et al. (1998), they report that this association is not robust to different measures of income inequality.

Considering a lower level of geography, Mellor and Milyo (2002) and Blakely et al. (2002) do not find any significant association between metropolitan-arealevel income inequality and self-rated health. Interestingly, some studies have found evidence of a statistically significant association between county-level income inequality and self reported health status (Soobadeer and LeClere, 1999; Fiscella and Franks, 2000). However, the relationship is no longer significant when the health outcome is measured by mortality (Fiscella and Franks, 1997). Overall, these studies present weak support to the assertion that greater income inequality is detrimental to individual health in the United States.

Few comparable micro-level studies have examined the robustness of this association outside the United States. Results from these studies generally corroborate U.S. findings. For instance, Shibuya et al. (2002) found no significant evidence supporting that income inequality measured at the *prefectures* level has a detrimental effect on self-rated health status in Japan. Likewise, Gerdtham and Johannesson (2004) found no significant effect of community level income inequality on mortality in Sweden.⁴ Weich et al. (2001; 2002), however, found significant association between the Gini coefficient in Britain's regions and mental disorders and self-reported health status. But they also found that the results were highly sensitive to the choice of inequality measure (the association disappears with Generalized Entropy indices of inequality).

The objective of this paper is to investigate this issue on a large entity outside the United Sates by using individual-level data gathered in 10 European Union countries drawn from the European Community Household Panel (ECHP) survey data. Providing additional evidence for the European Union is of particular interest as its economic development is comparable to the United States while generally fostering more progressive social and health policies. At the same time, the European Union as a whole can be viewed as a fairly heterogeneous federation of independent States with pronounced regional identities. As a result, one should expect to observe non-negligible regional variations in income and income inequality across E.U. regions. This strongly enhances the possibility to test whether individual health outcomes are responsive to variation in inequality. To the best of our knowledge, this analysis is also the first focussing on cross-national variations in inequality using individual-level data.⁵

Following Mellor and Milyo (2002) and Weich et al. (2002), we examine two versions of the IIH. The strong IIH assumes that income inequality is detrimental to all individuals in the society –poor and rich–, while the weak IIH states that income inequality is detrimental to the least well-off in the society. Following Gerdtham and Johannesson (2004), we also explicitly test the absolute and the relative income hypotheses. The absolute income hypothesis posits that, *ceteris paribus*, higher individual income has a protective effect on individual health. By contrast, according to the relative income hypothesis, an individual's health is not so much affected by his absolute level of income than by his level of income relative to the average income in his reference community.⁶

Our empirical strategy follows and extends the framework of Mellor and Milyo (2002) to take advantage of the longitudinal nature of the ECHP data. The use of panel data limits the problem of omitted variable bias since it allows us to control for the potential confounding effects of unobservable fixed effects in the relationship between health income and income inequality. It also mitigates the problem of differences in norms and expectations that plague cross-regional studies on self-assessed health (Sadana et al., 2000).

To assess the robustness of our results, we consider two standardized levels of geography, NUTS-0 and NUTS-1. The NUTS classification is the European Union's official regional classification system. NUTS-0 is the country level and NUTS-1 is the first level of aggregation below the country level.⁷ Since the healthinequality relationship has been reported to be sensitive to the way inequality is measured, we test the sensitivity of our results to a set of five measures of inequality.

The robustness of existing ecological cross-country studies has been undermined by the poor quality of their income distribution data which often lacked comparability across countries and across time (Judge et al., 1998; Macinko et al., 2003). In this paper, we overcome these limitations by using comparable longitudinal data gathered simultaneously and with a common questionnaire and methodology in different countries. Our self-reported health data and income inequality data should be (cross-nationally) comparable by construction. Nevertheless, there is a well-founded concern that measures of self-reported health, even when collected from surveys sharing common wording of the health question, can not be interpreted in a comparable fashion because of implicit variations in norms and health expectations between individuals (Sadana et al., 2000). An additional contribution of this paper is to offer a simple solution to correct for the potential bias arising from the lack of comparability of the self-rated variables in micro-level cross-country studies.

Distinguishing the effect by gender has been largely overlooked so far (Macintyre and Hunt, 1997). This is surprising since we know that life expectancy is shorter for males and that men's mortality has been found to be much more sensitive to deprivation than women's (McCarron et al., 1994; Raleigh and Kiri, 1997). In a macro-level international study of 13 OECD countries, McIsaac and Wilkinson (1997) did not find that the magnitude of the correlation between income inequality and mortality was significantly different across gender. Similar results from a within U.S. states study are reported by Kaplan et al. (1996). On the contrary, in a recent study, Regidor et al. (2003) found some evidence that female mortality in Spain might be more sensitive to income inequality than men's on 1980 data. However, they fail to confirm this finding on more recent data. We are not aware of any study using self-reported health status to explore the IIH separately on men and women.

To preview our results, unlike, e.g., Mellor and Milyo (2002), we find statistically significant evidence supporting the strong income inequality hypothesis regardless of gender, even after controlling for individual socioeconomic characteristics, income, and 'welfare state' regimes. Our results also support the idea that income inequality is more detrimental to low-income earners. However, we do not find support for a rigid interpretation of the weak IIH which stipulates that income inequality is *only* detrimental to the poorest. While we observe effects that are significantly different from zero in a statistical sense, the magnitude of the effect of inequality on health turns out to be small. The magnitude of the estimated gender differences is not overwhelming and is sensitive to model specification. Evidence supporting the absolute and the relative income hypotheses is weak and sensitive to model specification, especially once we control for regional differences in norms and individual fixed effects.

Data and methods used in this paper are outlined in the next section. Our empirical strategy and results are discussed in Section 3, followed by concluding remarks.

2 Data and Methods

2.1 The European Community Household Panel Survey

This study draws on data from the public use file of the European Community Household Panel survey (ECHP). The ECHP is a standardized multi-purpose annual longitudinal survey providing comparable micro-data about living conditions in the European Union Member States. The December 2003 release of the ECHP data used in this paper includes eight waves spanning the 1994–2001 time period. Over 60,000 households and 130,000 adults across the European Union were interviewed at each wave. The first wave covered all EU-15 Member States with the exception of Austria, Finland and Sweden. Austria joined in the second wave, Finland in the third, and Sweden in the fourth. From 1994 to 1996, the ECHP ran parallel to existing similar panel surveys in Germany, Luxembourg and the United Kingdom.⁸ From the fourth wave onwards, the ECHP samples were replaced by data harmonized *ex post* from these three existing surveys ('cloned' datasets). The topics covered in the survey include income, employment, housing, health, and education. An harmonized (E.U.-wide) questionnaire was designed at Eurostat, and the survey was implemented in each Members States by 'National Data Collection Units'. The public-use database is derived from the data collected in each of the Member States and is created, maintained and centrally distributed by Eurostat.⁹ The attractive feature of the ECHP data for the purpose of this study is that it provides individual-level data on income and demographics including individual health which are comparable across countries and over time.

In principle, the design of the ECHP should allow us to cover all EU-15 Member States. However, because of exceptions to the general ECHP design rules and missing information, we had to restrict our analysis to a subset of countries including Austria, Belgium, Denmark, Finland, France, Greece, Italy, Ireland, Portugal, Spain and the United Kingdom. The German, Luxembourgish and UK original ECHP samples were not used because they only cover three survey years and are therefore not appropriate for the estimation of our panel data models. By the same token, the Swedish dataset was dropped because it does not share the longitudinal design. Data for the Netherlands were excluded because information on NUTS-1 region of residence are not available, whereas the Luxembourg PSELL 'cloned' dataset does not contain information on selfreported health status. Additionally, after closer scrutiny and preliminary data checks, we dropped all data from the German SOEP 'cloned' dataset as well as from wave 6 of the UK BHPS clone because of departures in the wording of the survey questions about self-reported health compared to the original survey questionnaire. These departures resulted in largely distorted distributions of selfreported health (see Table 1 *supra* for the case of Germany).¹⁰

For comparability with earlier studies, we follow Fiscella and Franks (1997) and Mellor and Milyo (2002) and limit our sample to individuals aged 25 to 74.

2.2 Regional Measures of Income Level and Income Inequality

The ECHP data identify the region of residence of respondents down to the NUTS-1 level. NUTS-0 is the country level and NUTS-1 is the first level of ag-

gregation within countries. We are therefore able to consider the health-inequality relationship at these two levels of geography. The size of the regions defined by the NUTS-1 classification varies considerably across the European Union. However, since the NUTS is determined on the basis of population thresholds, it is reasonable to expect that these regions delimit relatively homogeneous territorial units.¹¹ Furthermore, the NUTS classification was precisely created to facilitate the collection, compiling and dissemination of comparable regional statistics in the European Union. This makes our analysis easily reproducible.

Concerns over the quality and comparability of existing international data on income distribution is one of the most severe drawback suffered by a majority of (aggregate-level) cross-national studies. Many studies relied on heterogeneous sources of income distribution data often collected at different points in time and/or failed to use an adequate measure of disposable income.¹² The ECHP survey allows us to circumvent these limitations since we are able to estimate our own regional income inequality measures across the E.U. using fully comparable individual-level income data.

The ECHP Users Database contains a measure of 'total net household income' expressed in national currency units. To make the household income data comparable across countries and over time, (i) all these data were expressed in 1995 prices using national consumer price indices, and (ii) cross-national differences in currency and price levels were normalized using the OECD purchasing power parity standards provided in the ECHP database.¹³ In addition, in order to take economies of scale in household consumption and differences in needs between adults and children into account, we converted all household incomes into a 'single-adult equivalent household income' by applying the conventional modified-OECD equivalence scale (see, for example, the recommendations in Atkinson et al., 2002, p.99). In the sequel, we refer to respondents' 'single-adult equivalent household income' as to their household income for short.

In order to assess the sensitivity of our results to the choice of an inequality measure, we estimated a series of five measures: the Gini coefficient, two Generalized Entropy measures (the Theil index and the Mean Log-deviation index), the coefficient of variation, and the ratio of the 90th and 10th percentiles. All these widely-used measures of inequality are 'relative' in the sense that they are insensitive to changes in scale (equi-proportionate increases in everyone's income). The Gini and the percentile ratio are known to be relatively insensitive to extreme incomes.¹⁴

The indices were computed for all NUTS-0 and NUTS-1 regions and for all survey years for which we have sample data in the ECHP. The income variable used to estimate the indices was the 'single-adult equivalent income' and data for all individuals in the region were used regardless of age. To prevent estimates from being driven by a limited number of outlying observations, the top and bottom one percent of income observations were discarded in all regions. All sample observations were weighted using the cross-section sample weights provided in the database. We estimated mean income at the two NUTS level similarly. The number of households per region used for estimation at the NUTS-1 level ranges from 209 (East Anglia (UK) in wave 8) to 4055 (Finland in wave 3). In several countries, the estimated NUTS-1 level inequality measures in the first wave of the panel (1994) appeared to be at odds with the rest of the series (frequently substantially higher). In order to limit potential measurement error, we therefore decided not to include data from wave 1 in our models and restrict our estimation sample to data from waves 2 to 8.¹⁵

2.3 Health Indicators

The ECHP survey collects information on self-reported health status for all respondents older than 16. This subjective measure of non-fatal health is commonly used in the literature. It is measured on a standard 5-point scale labeled 'very good', 'good', 'fair', 'poor' and 'very poor'. In this paper, we use this variable to derive two proxy measures of individual health. We first define a dummy indicator of poor health equal to one for the bottom two modes of this self-reported health status variable making our study comparable to Fiscella and Franks (1997, 2000), Soobadeer and LeClere (1999), Mellor and Milyo (2002) and Weich et al. (2002). This indicator has become increasingly popular in the health literature comforted by the consistent finding of a significant association between this proxy measure of poor health and mortality.¹⁶

Table 1 presents the distribution of self-reported health and our proxy measure of poor health by country and gender. In all countries but Ireland and Finland, a larger proportion of women report being in poor health. However, more so than gender differences, cross-country differences in the probability of reporting poor health hit the eye. The prevalence of poor health among men ranges from 3% in Ireland up to 18% in Portugal. We report similar results for women ranging from just below 4% in Ireland to almost 25% in Portugal. Aside from genuine differences in health status across countries, a plausible explanation for these cross-national differences is the sensitivity of self-reported health responses to systematic reporting biases across countries. Efforts to achieve cross-country comparability are mostly concentrated on eliminating one source of systematic bias, language, by producing comparable wording of questions. In this respect, the original ECHP data is comparable in the sense that careful wording of questions should largely eliminate bias due to differences in survey methodologies: the questions and response items are identical in all countries (except for cloned surveys such as the German SOEP, see footnote 10). However, differences in the wording of questionnaires are not the only sources of systematic bias. Sadana et al. (2000) convincingly argue that reporting biases due to regional differences in norms and health expectations among individuals may be responsible for considerable variations in self-reported health across countries such as the one observed between Portugal and the Republic of Ireland. Differences in the prevalence of self-reported poor health may therefore not reflect genuine differences in 'absolute' levels of health.

To circumvent this potential problem, we consider an alternative proxy measure of health based on the 5-point scale self-reported health variable. This measure is a score of 'relative ill-health.' It does not attempt to measure an individual's 'absolute' level of health, but it reflects an individual's health level compared to people with similar characteristics. We define it specifically as the rank of the respondent in the distribution of health outcomes conditional on age, gender, education, marital status and, crucially, country of residence.

These scores of individual relative ill-health were calculated in several steps. For each country, we first ran an ordered probit model of the 5-point health scale on all seven waves of pooled data. The models were estimated separately for men and women with age entering in cubic form, and with dummy variables for marital status (single, married, divorced, separated, or widowed) and education (less than second stage of secondary level education, second stage of secondary level education, or third level education according to ISCED classifications) as well as with additional controls for the month of interview. We then used the coefficient estimates to predict for all respondents the (conditional) probability of reporting each of the five possible health outcomes. These probabilities were used to calculate, for each respondent, the cumulative probability of being in a better category than the one actually reported (plus half the probability of being in the reported category). Finally, the cumulative probability, i.e. the rank order of respondents in the conditional distribution of health, was mapped to a continuous scale using a normalizing transform (inverse Gaussian transformation) to create our score of relative ill-health.

The cumulative probability reflects how badly the respondent fares compared to individuals from the same country and sharing the same gender, education, etc. The score is therefore a *relative* indicator of health purged from systematic differences in self-reported health due to country of residence, age, gender, education, marital status, and month of interview.¹⁷ As the score of relative ill-health is a continuous variable and is free from systematic country differences, we no longer need to be concerned about the equivalence of cut-off points across countries nor do we need to arbitrarily decide which cut-off point best captures poor health.

3 Empirical Strategy and Results

To estimate the effect of income inequality on self-reported health, we first estimate a random effects probit model using the standard dichotomous measure of poor health as dependent variable. This approach is similar to Mellor and Milyo (2002) and implicitly assumes that self-reported health is not contaminated by cultural differences or norms across countries (or, if it is, that it is adequately controlled for by the random effects component). However, we argued earlier that in the context of a multi-country study this assumption may not hold. In particular, this approach may yield biased estimates if part of the observed crosscountry variations in the health responses originates from the above-mentioned non-health related factors.¹⁸ In order to address this concern, we complement our analysis by estimating a fixed effects linear model using our score of individual relative ill-health as the dependent variable. The fixed effects specification comes with the additional benefit of eliminating the effect of unobserved timeconstant covariates that are associated with health. This includes, in particular, fixed regional characteristics, such as differences in norms and expectations, or differences in the public provision of health care. Coefficient estimates obtained with the fixed effects specification remain consistent even if these unobserved components are correlated with our explanatory variables.

Given the large discrepancy in the distribution of self-reported health between Portugal and the remaining European countries included in our estimation sample (see Table 1), and given the fact that Portugal is known as a high-inequality country, we also excluded Portuguese respondents from our final estimation sample. The rationale for this exclusion is to avoid the risk of biasing our results in favour of the income inequality hypothesis by the impact of a single idiosyncratic high inequality/very poor health country. Arguably, Ireland is an outlier in the distribution of self-assessed health too in comparison with the rest of the E.U. countries. But since Ireland combines good aggregate health indicators and high inequality, we adopted a 'conservative' position least favourable a priori to the income inequality hypothesis and kept the Irish respondents in our estimation sample.¹⁹ The resulting estimation sample contains a total number of 455,351 observations including 234,953 females. As in Mellor and Milyo (2002), our econometric analysis is based on unweighted data. Unweighted descriptive statistics of all variables used in our analysis are presented separately for men and women in Table 2.

3.1 Random Effects Probit Model Results

We base our analysis on three model specifications estimated using five different measures of income inequality. Given that each income inequality model yields comparable results, for expositional clarity, we restrict most of our discussion to commenting the estimation results of the 'Gini model.' To check the sensitivity of our results to the choice of geography, each model specification is estimated controlling for regional mean income and regional inequality measured at the NUTS-0 and the NUTS-1 levels respectively.

Our baseline specification explores the association between income inequality and self-reported health controlling for both the mean regional income and household income.²⁰ Our second specification is augmented by the addition of controls for individual characteristics (a cubic in age, dummies for highest level of education achieved and marital status dummies). Following Mellor and Milyo (2002), we add to our last specification regional dummies to control for various determinants of health which cannot be directly measured in the ECHP but could have an important regional component. We choose to define regional dummies following the classification of welfare regimes of Esping-Andersen (1990) which we believe is appropriate to capture relevant regional variations in access to health care, health care practices and provisions or social norms between the countries included in our sample. Results for the strong IIH from our Gini model are reported in Table 3. The first six columns of the table reports the results of the men sample followed by those of the women sample in the last six.²¹

Most of the earlier studies that we are aware of report estimated marginal effects (or simply coefficient estimates) and discuss signs and significance levels. Unfortunately, marginal effects often do not provide clear information about the order of magnitudes of the effect of inequality on individual health, and are difficult to compare across measures of inequality because of differences in the range of variation of these measures. For this reason, in addition to coefficient estimates, we report predicted changes of our health outcome variables for discrete changes in explanatory variables. The latter are constructed as predicted changes in the probability of reporting poor health for an increase in an explanatory variable from its 20th quantile to its 80th quantile in our sample (with all other explanatory variables set at their mean as in marginal effects estimation). These estimates are reported at the bottom of the tables. For example, we report in the first column of Table 3 that the predicted change in the probability that a European man reports being in poor health due to a change in income inequality (captured by the Gini coefficient in this case) is 0.001. This indicates that the predicted difference in the probability of reporting poor health (according to our model), when comparing two individuals sharing identical characteristics but living in regions with either high or low inequality, is 0.1 percentage point.²² A high (low) inequality region is defined as a region at the 80th (20th) quantile of the distribution of regional inequality estimates. This example corresponds to a Gini of 0.302 (0.225) for NUTS-0 regions. Predicted changes due to household and regional income are similarly defined (-0.2 and 0.1 percentage points respectively, in the same example). A high (low) income recipient has a household income at the 80th (20th) quantile of the distribution of income in our sample. These quantiles are at 6,600 and 17,000. In the remaining sections of the text, we refer to these predicted changes as marginal effects.

The signs and statistical significance of household income reported in Table 3 confirm the hypothesis of a concave positive non-linear relationship between household income and individual health and are consistent with the absolute income hypothesis. Higher household income leads to better health outcomes. This finding is robust to alternative choice of controls, the level of geography and across gender. On the contrary, evidence in support of the relative income inequality hypothesis - higher mean regional income implies a higher 'reference' income and therefore a lower health outcome for a given (absolute) income level - is weak. Although we find robust evidence for the latter at the NUTS-0 level, this finding no longer holds at the NUTS-1 level.²³

Contrary to our prior expectations, the positive and significant coefficient on the Gini index reported in Table 3 are evidence in support for the strong IIH that an increase in income inequality is detrimental to all members of society. This finding is robust to model specifications, the level of geography and across gender. However, the small magnitude of their corresponding marginal effects, ranging from 0.1 to 0.5 percentage points (depending on model specifications, level of aggregration and gender) undermines the importance of this significant association. This observation is robust to the use of alternative income inequality measures. Their corresponding marginal effects are summarized in the upper portion of Table 5. Regardless of gender, the size of these marginal effects is further reduced, without losing their statistical significance, once income inequality is measured at the NUTS-1 level. This finding is in line with a number of US micro-level studies which found that the magnitude and significance of the detrimental effect of income inequality tends to disappear when it is measured at a lower level of aggregation than U.S. States. It would have been useful to investigate whether we would lose statistical significance when income inequality is measured at a lower level of geographical aggregation (such as NUTS-2). However, respondent's residence information at this level of geography is not available in the ECHP.

Following Mellor and Milyo (2002) and Gerdtham and Johannesson (2004), we explore whether income inequality is more detrimental to the least well-off in the society. To examine this weak version of the IIH, we allow the effect of income inequality to vary by the income level of the household as in Mellor and Milyo (2002). This is done by interacting our measure of inequality with a set of household income quintile group dummies. Quintile groups are defined within the income distribution for each separate country and year. The results of this exercise, reported in Table 4, indicate that these interaction terms are decreasing in size and statistical significance as income quintile groups increase. This is consistent with the weak IIH. However, the relevance of this statistically significant observation must again be tempered by the small magnitude of their corresponding marginal effects. This result is robust to model specifications, the level of geography considered and across gender. The marginal effects obtained from alternative measures of inequality yield very similar results and are reported in Table 5.

It is worth noting that European females —in particular those in the lower tail of the income distribution— appear to be more adversely affected than European men. This is surprising considering that mortality of women has been found to be less sensitive to deprivation than mortality of men and that self-reported health is considered a good predictor of mortality. Also, regardless of our choice of geography, we find that the addition of conditioning variables does not reduce the magnitude of the detrimental effect of income inequality. This finding is at odds with the findings of the previous above-mentioned micro-level studies.

As suggested earlier, the lack of genuine cross-country comparability in the self-reported health variable could potentially bias our random effects probit estimates. We address this issue empirically by re-estimating a linear fixed effects model of individual health scores.

3.2 Fixed Effects Results

Fixed effects results of the Gini model are reported in Tables 6 and 7. In this model, the predicted changes (or marginal effects) measure the change in the rank-order of individuals in the (conditional) distribution of ill-health implied by a change in the explanatory variables of the fixed effects model (i.e. regional inequality, regional income, or household income). The rank-order is the proba-

bility that an individual with the same age, education, marital status and country of residence reports being in better health than the respondent.

We consider two model specifications. In our baseline model, we simply regress individual health score on regional mean income and a regional income inequality index. Our second model specification is augmented by a quadratic function of household income to capture the potential non-linear relationship between income and health. Note that we purposely limit the number of additional control variables since the estimated scores have already been adjusted to individual characteristics and country of residence.

The fixed effects estimates reported in Table 6 now support the relative income hypothesis among men whereas no statistically significant association is found among women. This is robust to model specifications and the level of geography. By contrast, we find no support for the absolute income hypothesis: individual income has no significant impact on the health score once we control for individual unobserved heterogeneity with this fixed effects model.

The results reported in Table 6 corroborate our earlier key finding of a significant detrimental effect of income inequality on the health of all individuals regardless of the level of geography considered. Likewise, the size of the marginal effects remains very small (ranging from 1.3 percentage points for women at the NUTS-1 level to 4.1 percentage points at the NUTS-0 level for men).²⁴ As reported in Table 8, we find comparable results across all inequality measures considered. We also confirm that the magnitude of this detrimental effect is significantly reduced, without losing its statistical significance however, when income inequality is measured at a lower level of geography (NUTS-1).

We re-explore the weak IIH and report the results in Table 7. Unlike in the random effects probit results, we only find statistically significant evidence that income inequality is more hazardous to the health of the least well-off men. Despite being statistically significant, the size of reported differences between the lower and the upper quintiles are also very small ranging from 0.3 to 0.4 percentage points.²⁵ No significant differences are observed among women who appear to be equally affected regardless of their household income. In contrast to earlier results, our fixed effect estimates suggest that men are more affected by inequality. The observed difference is small however and becomes negligible once income inequality is measured at the NUTS-1 level.

In sum, explicitly controlling for country specific fixed effects (such as responding bias) does not substantially alter our key finding of a statistically significant association between income inequality and individual health of negligible magnitude. This result is robust to model specifications, the level of geography and across gender. However, both models provide divergent evidence regarding the absolute and the relative income hypotheses and the effects across gender.

4 Conclusion

This is the first study which formally has explored, separately on men and women, the robustness of the income inequality hypothesis using individual multi-country data of Member States of the European Union. By carefully modelling the selfassessed health variable, and taking profit of both the large geographical coverage and the longitudinal nature of the European Community Household Panel survey, this paper avoids several pitfalls suffered by many earlier studies on the association between health and income inequality. In particular, the common design of the ECHP for all countries minimizes data comparability problems (of health outcomes, of income). The large coverage offers observation of heterogenous regions with substantial variation in inequality levels and the longitudinal nature of the data allow us to avoid bias due to time-invariant omitted variables (access to health care facilities, social protection provision). Furthermore, we offer a simple solution to a major concern that is specific to individual multi-country studies using the self-reported health variable as proxy measure of health, namely that individual responses to self-reported health could be contaminated by systematic cross-country reporting biases due to differences in norms and expectations across countries.

Whether we control for potential reporting bias or not, we generally find significant support in favour of the strong version of the income inequality hypothesis for both men and women in our pooled sample of 10 E.U. countries. This finding is seemingly at odds with comparable recent within-country studies in the United States (Mellor and Milyo, 2002) and in Sweden (Gerdtham and Johannesson, 2004). However, we also find that the magnitude of this detrimental effect is small, despite its statistical significance. The existence of a robust and significant gender differential of inequality on health does not clearly emerge. Overall, our results suggest that the potential welfare gains from lower inequality in the form of improved health outcomes are likely to be of a very limited magnitude.

Given the complexity surrounding the interpretation of self-reported health status across countries, one should carefully consider the results reported in this study. For the reasons mentioned above, we are confident that many of the usual problems of similar studies have been avoided. But it remains that we are only able to assess the impact of inequality on 'relative' health, not on 'absolute' levels of health (such as indicated by mortality or morbidity indicators). Also, our panel data models do not fully control for potential omitted variables that are volatile over time. However, we do not think of confounding regional variables that would vary substantially in the short time dimension of our panel (seven years). The choice of an appropriate level of regional aggregation also remains an open question. The ECHP only allows fairly highly aggregated analysis. In the absence of convincing pathway mechanisms, additional studies are needed, preferably from other data sources, to completely convince ourselves that our results are not driven by omitted variable bias (inequality being a proxy for other unobserved factors) or that inequality is not more (or less) strongly associated with health at more disaggregated levels of geography. Possible extensions of this paper could also examine the sensitivity of its results to objective measures of health or to mortality. However, objective health variables available in the ECHP data are too limited while a rigorous mortality study would require a much longer panel such as in Gerdtham and Johannesson (2004).

Notes

¹An equally contentious issue is the characterization of the actual pathway by which greater income inequality translates into poor health. Many authors have hypothesized that inequality is a cause of some psycho-social stress detrimental to everyone's health in the society. See Deaton (2003) for a comprehensive review.

²Rodgers (1979) and Gravelle et al. (2002) show that, if a positive concave relationship between individual income and individual health exists, keeping average income constant, any increase in the dispersion of income must translate into poorer average population health.

³See Subramanian and Kawachi (2004) for a recent and detailed survey of existing individual-level studies.

⁴Similarly, Osler et al. (2002) did not find conclusive evidence supporting a robust relationship between income inequality measured at the *parish* level and various causes of mortality in a Danish study conducted in Copenhagen. However, this study only focuses on areas within Copenhagen and is therefore difficult to compare to within-country studies.

⁵None is referenced in the survey by Subramanian and Kawachi (2004).

⁶Individual-level data permit to distinguish clearly the relative income hypothesis and the income inequality hypothesis. Interestingly, the distinction is not as sharp in most aggregate-level studies since macro-level data do not permit to identify the two effects separately. Early tests of the relationship between health and inequality were often actually interpreted as tests of the 'relative income hypothesis'. See Deaton (2003) or Subramanian and Kawachi (2004) for more details.

⁷NUTS stands for 'Nomenclature des Unités Territoriales Statistiques'. The

number of NUTS-1 regions by country varies from 16 in Germany, 11 in Italy and the United Kingdom to only 1 in Denmark, Ireland, Sweden, and Luxembourg.

⁸The German Socio-Economic Panel (SOEP), the Luxembourg Socio-Economic Panel (PSELL), and the British Household Panel Survey (BHPS).

⁹See EUROSTAT (2003) or Lehmann and Wirtz (2003) for more information on the database, and Peracchi (2002) for an independent critical review.

¹⁰⁴ The original ECHP questionnaire asks "How is your health in general?" ("Wie ist Ihr allgemeiner Gesundheitszustand?") whereas in the SOEP questionnaire respondents are asked "How would you describe your current health?" ("Wie würden Sie Ihren gegenwärtigen Gesundheitszustand beschreiben?"). In the SOEP questionnaire, respondents have the choice to rate their health as either "very good", "good", "satisfactory", "poor" or "bad" (in German, "sehr gut", "gut", "zufriedenstellend", "weniger gut" or "schlecht") whereas in the original ECHP questionnaire respondents could rate their health as either "very good", "good", "fair", "bad" or "very bad" (in German "sehr gut", "gut", "mäßig", "schlecht", "sehr schlecht"). The SOEP-clone's subjective health variable is evidently not strictly comparable to the original ECHP question. Similarly, in wave 6, the wording of the self-reported health question in the underlying BHPS was not consistent with the other waves (Taylor, 2003).

¹¹The territorial units included at the NUTS-1 level are determined by a minimum population threshold of 3 million and a maximum of 7 million. As a consequence, NUTS-0 and NUTS-1 levels coincide in small countries such as Luxembourg, Ireland or Denmark.

¹²See Judge et al. (1998) and Macinko et al. (2003) for a comprehensive and critical review of these earlier cross-national studies.

 13 We did not find price indices at NUTS-1 for all regions so we were not able

to correct for within-country price differentials.

¹⁴See, for example, Cowell (1995) for a definition and detailed discussion of the properties of the inequality measures used in this paper.

¹⁵Information on the sample sizes by regions and waves, inequality indices estimates, as well as more detailed data checks are available from the authors upon request.

¹⁶See McCallum et al. (1994); Idler and Kasl (1995); Idler and Benyamini (1997); Strauss and Thomas (1998) among others.

¹⁷The relative ill-health score can also be understood as a residual from an ordered probit model on the 5-points self-reported health variable with flexible controls for gender, country of residence, and other demographic characteristics.

¹⁸In fact, even within-country studies, such as the one by Mellor and Milyo (2002), could potentially be affected by reporting biases across States due to differences in norms and expectations.

¹⁹We tested the robustness of our results to the exclusion/inclusion of countries. We ran our models with and without Portugal and excluding both Ireland and Portugal. In fact, much of the effect is absorbed by the random/fixed effect component so that that the impact on the coefficient of the inequality is usually small. However, we prefer to report in the paper only the most 'conservative' results based on excluding the Portuguese sample.

²⁰We considered several specifications for household income to allow for the non-linear relationship between income and health, including a spline function in income as in Mellor and Milyo (2002). As it did not affect our results, we opted for a more parsimonious quadratic function.

²¹Tables of results derived from alternative income inequality measures are available in the appendix.

²²'Identical individuals' share the same regional income environment, the same household income, etc.; all set at their sample means.

²³Note that, as in Mellor and Milyo (2002) and Gerdtham and Johannesson (2004), our model implies that individuals belonging to the same NUTS-0/NUTS-1 region constitute the reference group. In the absence of clear theoretical foundations, it is difficult to assess which community level is the most relevant to test the validity of the relative income hypothesis. Also, Deaton (2003) for example argues that reference groups do not have to be limited to geography, and Deaton and Paxson (2001) suggest educational groups as another possibility.

²⁴Note that these marginal effects are not comparable to those derived from the random effects probit model because of the different nature of the dependent variable.

²⁵For all models, we reject the null hypothesis of an equal marginal effects between men in the lower and the upper income quintiles at standard confidence levels (p-values less than 0.001).

References

- Atkinson, A. B., Cantillon, B., Marlier, E. and Nolan, B. (2002), Social Indicators. The EU and Social Inclusion, Oxford University Press, Oxford, UK.
- Blakely, T. A., Lochner, K. and Kawachi, I. (2002), 'Metropolitan area income inequality and self-rated health–a multilevel study', *Social Science and Medicine* 54(1), 65–77.
- Cowell, F. A. (1995), *Measuring Inequality*, 2nd edn, Harvester Wheatsheaf, Hemel Hempstead, UK.
- Daly, M., Duncan, G., Kaplan, G. and Lynch, J. (1998), 'Macro-to-micro links in the relation between income inequality and mortality', *The Milbank Quarterly* 76(3), 315–339.
- Deaton, A. (2003), 'Health, inequality, and economic development', Journal of Economic Literature 41(1), 113–158.
- Deaton, A. and Paxson, C. (2001), Mortality, education, income inequality among American cohorts, in D. Wise, ed., 'Themes in the Economics of Aging', Chicago University Press for NBER.
- Esping-Andersen, G. (1990), The Three Worlds of Welfare Capitalism, Princeton University Press, Princeton, New Jersey.
- EUROSTAT (2003), DOC.PAN 168/2003-12: ECHP UDB manual, Waves 1 to 8, Eurostat, European Commission, Luxembourg.
- Fiscella, K. and Franks, P. (1997), 'Poverty or income inequality as predictor of mortality: Longitudinal cohort study', *British Medical Journal* **314**(7096), 1724–1728.

- Fiscella, K. and Franks, P. (2000), 'Individual income, income inequality, health and mortality: What are the relationships?', *Health Services Research* 35(1), 307–318.
- Gerdtham, U. and Johannesson, M. (2004), 'Absolute income, relative income, income inequality and mortality', *Journal of Human Resources* **39**(1), 229–247.
- Gravelle, H. (1998), 'How much of the relation between population mortality and unequal distribution of income is a statistical artefact?', *British Medical Journal* **316**(7128), 382–385.
- Gravelle, H., Wildman, J. and Sutton, M. (2002), 'Income, income inequality and health: What can we learn from aggregate data?', Social Science and Medicine 54(4), 577–589.
- Idler, E. L. and Benyamini, Y. (1997), 'Self-rated health and mortality: A review of twenty-seven community studies', *Journal of Health and Social Behavior* 38, 21–37.
- Idler, E. L. and Kasl, S. V. (1995), 'Self-ratings of health: Do they also predict change in functional ability?', *Journal of Gerontology* 50B, S344–S353.
- Judge, K., Mulligan, J. and Benzeval, M. (1998), 'Income inequality and population health', Social Science and Medicine 46(4-5), 567–579.
- Kaplan, G., Pamuk, E., Lynch, J., Cohen, R. and Balfour, J. (1996), 'Inequality in income and mortality in the United States: Analysis of mortality and potential pathways', *British Medical Journal* **312**, 999–1003.
- Kawachi, I. and Kennedy, B. P. (1997), 'Health and social cohesion: Why care about income inequality?', British Medical Journal 314, 1037–1040.

- Kawachi, I., Kennedy, B. P., Lochner, K. and Prothrow-Stith, D. (1997), 'Social capital, income inequality, and mortality', American Journal of Public Health 87, 1491–1498.
- Kennedy, B., Kawachi, I., Glass, R. and Prothrow-Stith, D. (1998), 'Income distribution, socioeconomic status, and self-rated health in the United States', *British Medical Journal* **317**(7163), 917–921.
- Lehmann, P. and Wirtz, C. (2003), The EC Household Panel Newsletter (01/02), Methods and Nomenclatures, Theme 3: Population and social conditions, Eurostat, European Commission, Luxembourg.
- Lynch, J., Kaplan, G., Pamuk, E., Cohen, R., Heck, K., Balfour, J. and Yen, I. (1998), 'Income inequality and mortality in Metropolitan Areas of the United States', American Journal of Public Health 88(7), 1074–1080.
- Macinko, J., Shi, L., Starfield, B. and Wulu, J. (2003), 'Income inequality and health: A critical review of the literature', *Medical Care Research and Review* 60(4), 407–452.
- Macintyre, S. and Hunt, K. (1997), 'Socio-economic position, gender and health:How do they interact?', Journal of Health Psychology 2, 315–334.
- McCallum, J., Shadbolt, B. and Wang, D. (1994), 'Self-rated health and survival: a 7-year follow-up study of Australian elderly', American Journal of Public Health 847, 1100–1105.
- McCarron, P., Davey-Smith, G. and Womersley, J. (1994), 'Deprivation and mortality in Glasgow: Changes from 1980 to 1992', *British Medical Journal* 309, 1481–1482.
- McIsaac, S. and Wilkinson, R. G. (1997), 'Income distribution and cause-specific mortality', *European Journal of Public Health* 7, 45–53.

- Mellor, J. M. and Milyo, J. (2001), 'Re-examining the ecological association between income inequality and health', *Journal of Health Politics, Policy and Law* 26(3), 487–522.
- Mellor, J. M. and Milyo, J. (2002), 'Income inequality and health status in the United States', Journal of Human Resources 37(3), 510–539.
- Osler, M., Prescott, E., Grönbäck, M., Christensen, U., Due, P. and Engholm, G. (2002), 'Income inequality, individual income, and mortality in Danish adults: Analysis of pooled data from two cohort studies', *British Medical Journal* **324**(7328), 13–16.
- Peracchi, F. (2002), 'The European Community Household Panel: A review', Empirical Economics 27, 63–90.
- Raleigh, V. and Kiri, V. (1997), 'Life expectancy in England: Variations and trends by gender, health authority, and level of deprivation', *Journal of Epidemiology and Community Health* **51**, 649–658.
- Regidor, E., Calle, M. E., Navarro, P. and Domínguez, V. (2003), 'Trends in the association between average income, poverty and income inequality and life expectancy in Spain', *Social Science and Medicine* 56, 961–971.
- Rodgers, G. B. (1979), 'Income and inequality as determinants of mortality: An international cross-section analysis', *Population Studies* **33**(2), 343–351.
- Sadana, R., Mathers, C., Lopez, D., Murray, C. and Iburg, K. (2000), Comparative analysis of more than 50 household surveys on health status, GPE Discussion Paper Series 15, World Health Organization.
- Shibuya, K., Hashimoto, H. and Yano, E. (2002), 'Individual income, income distribution, and self rated health in Japan: Cross sectional analysis of nationally representative sample', *British Medical Journal* **324**(7328), 16–19.

- Soobadeer, M. and LeClere, F. (1999), 'Aggregation and the measurement effects on morbidity', Social Science and Medicine 46(6), 733–744.
- Strauss, J. and Thomas, D. (1998), 'Health, nutrition, and economic development', Journal of Economic Literature 36, 766–817.
- Subramanian, S. V. and Kawachi, I. (2004), 'Income inequality and health: What have we learned so far?', *Epidemiologic Reviews* 26, 78–91.
- Taylor, M. F., ed. (2003), British Household Panel Survey User Manual, University of Essex, Colchester, UK.
- Weich, S., Lewis, G. and Jenkins, S. P. (2001), 'Income inequality and the prevalence of common mental disorders', *British Journal of Psychiatry* 178, 222–227.
- Weich, S., Lewis, G. and Jenkins, S. P. (2002), 'Income inequality and self rated health in Britain', Journal of Epidemiology and Community Health 56, 436– 441.
- Wilkinson, R. G. (1992), 'Income distribution and life expectancy', British Medical Journal 304, 165–168.
- Wilkinson, R. G. (1996), Unhealthy Societies: The Afflictions of Inequality, Routledge, London.

Tables and Regression Results

	Very				Very	Poor/
Country	good	Good	Fair	Poor	poor	Very poor
				Men		
Austria	31.3	43.0	19.6	5.0	1.0	6.0
Belgium	24.6	53.2	18.0	3.4	0.7	4.2
$\operatorname{Denmark}$	47.3	32.7	15.5	3.4	1.1	4.5
Finland	16.6	45.4	31.6	5.7	0.8	6.4
France	13.5	49.0	30.8	3.2	3.4	6.7
Germany $(ECHP)$	13.3	54.0	25.0	6.1	1.6	7.7
Germany $(SOEP)$	7.5	41.4	34.8	12.7	3.6	16.3
Ireland	44.1	37.8	15.1	2.3	0.7	3.0
Greece	52.5	27.1	13.3	5.2	1.9	7.1
Italy	16.7	46.5	28.2	7.2	1.5	8.7
Luxembourg (ECHP)	25.3	45.2	23.2	4.8	1.5	6.3
Netherlands	20.3	56.5	19.6	3.1	0.5	3.6
Portugal	4.1	46.4	31.9	13.8	3.7	17.6
Spain	16.7	53.0	21.3	7.7	1.3	9.0
Sweden	40.7	37.2	16.6	4.4	1.1	5.4
UK (ECHP)	35.6	39.2	19.2	4.6	1.4	6.0
UK (BHPS)	25.5	46.6	19.8	6.4	1.8	8.2
			V	Vomen		
Austria	28.2	44.2	21.0	5.4	1.3	6.6
Belgium	18.9	51.4	24.4	4.4	0.9	5.3
$\operatorname{Denmark}$	43.1	32.5	18.1	4.8	1.4	6.3
Finland	14.9	45.9	32.1	6.2	0.9	7.1
France	10.8	46.3	34.6	4.2	4.2	8.3
Germany (ECHP)	10.3	50.7	29.1	7.7	2.2	9.9
Germany (SOEP)	6.1	36.9	36.7	16.4	3.8	20.2
Ireland	44.3	35.5	16.6	2.8	0.7	3.5
Greece	44.2	29.3	17.9	6.6	2.0	8.6
Italy	11.5	43.3	33.7	9.8	1.8	11.5
Luxembourg (ECHP)	20.9	42.6	28.3	6.6	1.6	8.2
Netherlands	15.5	55.0	24.0	4.7	0.8	5.4
Portugal	2.0	36.4	36.9	20.6	4.2	24.7
Spain	14.5	48.7	24.0	10.8	2.0	12.8
Sweden	36.9	35.8	20.6	5.3	1.4	6.7
UK (ECHP)	32.3	38.8	22.2	5.2	1.6	6.8
UK (BHPS)	20.2	48.1	21.9	7.5	2.3	9.8

 Table 1: Distribution of self-reported health level (in percent)

Notes: All waves of data pooled (except UK (BHPS) wave 6). Individuals aged between 24 and 75. Sample weights used.

Variable	Mean	P25	P75	Min	Max
Men					
Poor health binary indicator	0.07	0.00	0.00	0.00	1.00
Score of relative ill-health (raw)	0.50	0.29	0.70	0.01	1.00
Score of relative ill-health	0.02	-0.54	0.53	-2.50	4.02
Household income (in single-adult equivalent units)	12804.26	7504.23	15954.24	100.88	1.25e + 06
Age of individual	46.69	35.00	58.00	25.00	74.00
Upper secondary education level (ISCED 3)	0.32	0.00	1.00	0.00	1.00
Less than upper secondary education level (ISCED 0-2)	0.47	0.00	1.00	0.00	1.00
Separated	0.01	0.00	0.00	0.00	1.00
Divorced	0.03	0.00	0.00	0.00	1.00
Widowed	0.02	0.00	0.00	0.00	1.00
Never married	0.21	0.00	0.00	0.00	1.00
Sample size	$220 \ 398$				
Women					
Poor health binary indicator	0.08	0.00	0.00	0.00	1.00
Score of relative ill-health (raw)	0.50	0.29	0.71	0.00	1.00
Score of relative ill-health	0.02	-0.54	0.56	-2.82	3.85
Household income (in single-adult equivalent units)	12350.84	7224.84	15440.92	103.28	1.25e + 06
Age of individual	47.09	35.00	58.00	25.00	74.00
Upper secondary education level (ISCED 3)	0.28	0.00	1.00	0.00	1.00
Less than upper secondary education level (ISCED 0-2)	0.53	0.00	1.00	0.00	1.00
Separated	0.02	0.00	0.00	0.00	1.00
Divorced	0.05	0.00	0.00	0.00	1.00
Widowed	0.08	0.00	0.00	0.00	1.00
Never married	0.15	0.00	0.00	0.00	1.00
Sample size	234 953	0.00	0.00		
Regional estimates					
Mean income at NUTS 0	11653.63	10091.68	13824.06	7570.57	15782.92
Gini coefficient at NUTS 0	0.27	0.25	0.30	0.19	0.33
Ratio of 90th to 10th percentile at NUTS 0	3.76	3.29	4.34	2.42	5.12
Mean Log Deviation index at NUTS 0	0.13	0.11	0.16	0.06	0.19
Theil index at NUTS 0	0.12	0.10	0.15	0.06	0.17
Coefficient of variation at NUTS 0	0.51	0.47	0.57	0.35	0.61
Mean income at NUTS 1	11501.77	9256.23	13485.16	6383.69	18939.36
Gini coefficient at NUTS 1	0.27	0.24	0.29	0.19	0.36
Ratio of 90th to 10th percentile at NUTS 1	3.62	3.02	4.02	2.42	6.26
Mean Log Deviation index at NUTS 1	0.12	0.09	0.15	0.06	0.28
Theil index at NUTS 1	0.12	0.09	0.14	0.06	0.22
Coefficient of variation at NUTS 1	0.50	0.45	0.55	0.35	0.75
Conservative regime	0.33 0.27	0.00	1.00	0.00	1.00
Social-Democratic regime	0.21	0.00	0.00	0.00	1.00
Southern regime	0.12 0.46	0.00	1.00	0.00	1.00
Total sample size	455 351	0.00	1.00	0.00	1.00
Number of distinct NUTS 0 regions	10				
Number of distinct NUTS 1 regions	49				

Table 2: Descriptive statistics for estimation sample

			W	en					Wo	men		
		0 SLUN			NUTS 1			NUTS 0			NUTS 1	
Coefficient estimates on												
Mean income in region	4.60^{*}	6.14^{*}	10.82^{*}	-0.30	1.13	1.67_{1}^{+}	4.49^{*}	4.69^{*}	12.02^{*}	-0.52	0.01	2.18^{*}
	(6.07)	(8.16)	(10.25)	(0.52)	(2.06)	(2.43)	(6.55)	(7.15)	(12.95)	(1.04)	(0.02)	(3.62)
Gini coefficient	4.00^{*}	4.48^{*}	6.81^{*}	1.12^{*}	1.72^{*}	1.36^{*}	4.64^{*}	4.82^{*}	7.02^{*}	1.25^{*}	1.81^{*}	1.23^{*}
	(8.58)	(9.28)	(8.55)	(2.97)	(4.52)	(2.87)	(10.67)	(11.25)	(9.98)	(3.66)	(5.32)	(2.95)
Household income	-3.64^{*}	-2.64*	-2.62*	-3.48*	-2.53^{*}	-2.53^{*}	-2.94^{*}	-1.78*	-1.77*	-2.83*	-1.67*	-1.67^{*}
	(23.12)	(17.00)	(16.85)	(21.98)	(16.15)	(16.14)	(20.87)	(13.12)	(13.05)	(20.35)	(12.15)	(12.13)
Household income squared	0.30^{*}	0.21^{*}	0.21^{*}	0.29^{*}	0.21^{*}	0.21^{*}	0.27*	0.17^{*}	0.17*	0.27^{*}	0.16^{*}	0.16^{*}
	(14.87)	(10.39)	(10.40)	(14.09)	(9.82)	(9.85)	(15.90)	(9.98)	(10.00)	(15.17)	(9.30)	(9.33)
Control for individual char.	no	yes	yes	$\mathbf{n}0$	yes	\mathbf{yes}	no	yes	\mathbf{yes}	no	\mathbf{yes}	yes
Control for regime-type effects	ou	no	yes	$\mathbf{n}0$	$\mathbf{n}0$	\mathbf{yes}	no	ou	\mathbf{yes}	no	no	\mathbf{yes}
Predicted change in probability	of poor h	ealth										
Mean income effect	0.001^{*}	0.001^{*}	0.002^{*}	-0.000	0.000	0.000	0.002^{*}	0.003^{*}	0.005^{*}	-0.000	0.000	0.001^{*}
Inequality effect	0.001^{*}	0.002^{*}	0.003^{*}	0.000^{*}	0.001^{*}	0.000^{*}	0.004^{*}	0.005^{*}	0.005^{*}	0.001^{*}	0.001^{*}	0.001^{*}
Household income effect	-0.002^{*}	-0.002*	-0.001^{*}	-0.002^{*}	-0.002*	-0.002*	-0.003*	-0.002*	-0.001^{*}	-0.003*	-0.002*	-0.002*
Notes: Coefficient or	n mean regi	onal income	and house	hold income	e multiplied	by 100,000	. Coefficien	at on square	ed househol	ld income n	nultiplied	
by $10e^{10}$. † and * in	idicate signi	ficance at 5 ⁽	% and 1% 1	levels respec	ctively. Abs	solute z-valı	tes in parer	theses. See	text for ar	ı explanatio	n on the	
construction of predi-	cted probab	ility change.										

nodels of the probability of reporting poor health with the Gini coefficient as regional inequicient estimates (top) and implied change in predicted probability (bottom).
--

			Me	en					Won	nen		
Explanatory variable		0 STUN			NUTS 1			NUTS 0			NUTS 1	
Coefficient estimates on												
Mean income in region	1.99^{*}	4.18^{*}	8.92^{*}	-1.75^{*}	0.06	1.22	2.23^{*}	3.34^{*}	10.74^{*}	-1.61^{*}	-0.67	1.90^{*}
	(2.60)	(5.40)	(8.37)	(3.08)	(0.11)	(1.77)	(3.18)	(4.99)	(11.47)	(3.20)	(1.37)	(3.18)
Gini coefficient times lowest fifth	5.17^{*}	5.25^{*}	7.50^{*}	2.27^{*}	2.54^{*}	2.11^{*}	5.37^{*}	5.30^{*}	7.49^{*}	2.08^{*}	2.31^{*}	1.72^{*}
	(10.94)	(10.74)	(9.39)	(5.90)	(6.53)	(4.41)	(12.30)	(12.24)	(10.62)	(6.01)	(6.70)	(4.11)
Gini coefficient times second fifth	4.70^{*}	4.89^{*}	7.14^{*}	1.80^{*}	2.18^{*}	1.74^{*}	4.99*	5.06^{*}	7.24^{*}	1.70^{*}	2.07^{*}	1.46^{*}
	(9.99)	(10.06)	(8.95)	(4.70)	(5.65)	(3.64)	(11.48)	(11.73)	(10.29)	(4.96)	(6.05)	(3.47)
Gini coefficient times third fifth	3.99*	4.35^{*}	6.61^{*}	1.08^{*}	1.62^{*}	1.16_{1}	4.56^{*}	4.79^{*}	6.97^{*}	1.28^{*}	1.81^{*}	1.16^{*}
	(8.49)	(8.96)	(8.27)	(2.80)	(4.20)	(2.42)	(10.47)	(11.10)	(9.89)	(3.72)	(5.28)	(2.77)
Gini coefficient times fourth fifth	3.44^{*}	4.04^{*}	6.29^{*}	0.51	1.29^{*}	0.81	3.96*	4.42^{*}	6.59^{*}	0.67	1.43^{*}	0.74
	(7.30)	(8.31)	(7.87)	(1.33)	(3.34)	(1.68)	(9.06)	(10.21)	(9.34)	(1.94)	(4.14)	(1.75)
Gini coefficient times highest fifth	2.70^{*}	3.50^{*}	5.74^{*}	-0.25	0.70	0.18	3.45^{*}	4.13^{*}	6.30^{*}	0.15	1.11^{*}	0.37
	(5.63)	(7.05)	(7.13)	(0.64)	(1.75)	(0.36)	(7.73)	(9.36)	(8.87)	(0.42)	(3.16)	(0.87)
Household income	-0.82*	-0.71*	-0.68*	-0.73*	-0.59^{*}	-0.49^{+}	-0.75*	-0.52^{*}	-0.49*	-0.75*	-0.45	-0.31
	(3.57)	(3.05)	(3.00)	(3.20)	(2.61)	(2.21)	(3.62)	(2.83)	(2.71)	(3.68)	(2.57)	(1.83)
Household income squared	0.07_{1}^{+}	0.05	0.05	0.06^{+}	0.04	0.04	0.08^{*}	0.06^{*}	0.06^{*}	0.08^{*}	0.05^{*}	0.04^{+}_{-}
	(2.22)	(1.70)	(1.64)	(1.96)	(1.34)	(1.02)	(3.85)	(3.16)	(3.07)	(3.91)	(2.95)	(2.39)
Control for individual char.	$\mathbf{n}0$	yes	yes	$\mathbf{n}0$	\mathbf{yes}	\mathbf{yes}	no	yes	yes	no	yes	\mathbf{yes}
Control for regime-type effects	$\mathbf{n}0$	ou	\mathbf{yes}	no	ou	\mathbf{yes}	ou	$\mathbf{n}0$	\mathbf{yes}	no	no	\mathbf{yes}
Predicted change in probability of	poor healt	h										
Mean income effect	0.000^{+}	0.001^{*}	0.002^{*}	-0.000*	0.000	0.000	0.001^{*}	0.002^{*}	0.004^{*}	-0.001^{*}	-0.001	0.001^{*}
Inequality effect (lower quintile)	0.004^{*}	0.004^{*}	0.005^{*}	0.002^{*}	0.002^{*}	0.001^{*}	0.008^{*}	0.007^{*}	0.007^{*}	0.003^{*}	0.003^{*}	0.001^{*}
Inequality effect (upper quintile)	0.000^{*}	0.001^{*}	0.001^{*}	-0.000	0.000	0.000	0.001^{*}	0.003^{*}	0.002^{*}	0.000	0.001^{*}	0.000
Household income effect	-0.000*	-0.000*	-0.000*	-0.000*	-0.000†	-0.000†	-0.001*	-0.001^{*}	-0.000*	-0.001^{*}	-0.001†	-0.000
Notes: Coefficient on m	ean regional	l income and	d household	income mu	ultiplied by	100,000. C	Joefficient o	n squared h	ousehold in	come multi	plied	
by $10e^{10}$. † and * indica	ate significa.	nce at 5% a	nd 1% level	s respective	ely. Absolut	e z-values	in parenthe	ses. See tex	t for an ex _l	planation or	1 the	
		-		•					•			
construction of predicted	1 probability	· change.										

measure and interaction effects with income quintile groups; coefficient estimates (top) and implied change in predicted probability **Table 4:** Random effects probit models of the probability of reporting poor health with the Gini coefficient as regional inequality

			M	en					Wor	nen		
		0 SLUN			NUTS 1			0 SLUN			NUTS 1	
Strong IIH												
Gini coefficien	$t = 0.001^{*}$	0.002^{*}	0.003^{*}	0.000*	0.001^{*}	0.000^{*}	0.004^{*}	0.005^{*}	0.005^{*}	0.001^{*}	0.001^{*}	0.001^{*}
Ratio of 90th to 10th percentil	le 0.001^*	0.001^{*}	0.001^{*}	0.000^{*}	0.000^{*}	0.000^{+}	0.004^{*}	0.004^{*}	0.002^{*}	0.001^{*}	0.001^{*}	0.000
Theil Inde	$x 0.001^{*}$	0.002^{*}	0.002^{*}	0.000^{*}	0.001^{*}	0.001^{*}	0.004^{*}	0.005^{*}	0.004^{*}	0.001^{*}	0.002^{*}	0.001^{*}
Mean Log Deviation inde	$ x 0.001^{*} $	0.002^{*}	0.002^{*}	0.000*	0.001^{*}	0.001^{*}	0.004^{*}	0.005^{*}	0.004^{*}	0.001^{*}	0.002^{*}	0.001^{*}
Coefficient of variation	n 0.001*	0.002^{*}	0.002^{*}	0.000^{*}	0.001^{*}	0.000^{*}	0.003^{*}	0.004^{*}	0.004^{*}	0.001^{*}	0.001^{*}	0.001^{*}
Weak IIH												
Gini coefficient (lower quintile	e) 0.004*	0.004^{*}	0.005^{*}	0.002^{*}	0.002^{*}	0.001^{*}	0.008^{*}	0.007^{*}	0.007^{*}	0.003^{*}	0.003^{*}	0.001^{*}
Gini coefficient (upper quintile	e) 0.000*	0.001^{*}	0.001^{*}	-0.000	0.000	0.000	0.001^{*}	0.003^{*}	0.002^{*}	0.000	0.001^{*}	0.000
Ratio of 90th to 10th percentile (lower quintile	e) 0.004*	0.003^{*}	0.002^{*}	0.001^{*}	0.001^{*}	0.001^{*}	0.007^{*}	0.006^{*}	0.003^{*}	0.002^{*}	0.002^{*}	0.001^{*}
Ratio of 90th to 10th percentile (upper quintile	e) 0.000*	0.000^{*}	0.000	-0.000*	-0.000	-0.000†	0.001^{*}	0.002^{*}	0.001_{1}^{+}	-0.000†	0.000	-0.000
Theil Index (lower quintile	e) 0.005*	0.004^{*}	0.005^{*}	0.002^{*}	0.002^{*}	0.001^{*}	0.008^{*}	0.008^{*}	0.007^{*}	0.003^{*}	0.003^{*}	0.002^{*}
Theil Index (upper quintile	e) 0.000*	0.001^{*}	0.001^{*}	-0.000*	-0.000	-0.000	0.001^{*}	0.002^{*}	0.002^{*}	-0.000†	0.000	-0.000
Mean Log Deviation index (lower quintile	e) 0.005*	0.005^{*}	0.005^{*}	0.002^{*}	0.002^{*}	0.002^{*}	0.008^{*}	0.008^{*}	0.006^{*}	0.003^{*}	0.003^{*}	0.002^{*}
Mean Log Deviation index (upper quintile	e) 0.000†	0.001^{*}	0.001^{*}	-0.000*	0.000	-0.000	0.001^{*}	0.003^{*}	0.002^{*}	-0.000*	0.000	0.000
			-			-			-		-	
Coefficient of variation (lower quintile	e) 0.004*	0.004^{*}	0.004^{*}	0.001^{*}	0.002^{*}	0.001^{*}	0.007^{*}	0.007^{*}	0.006^{*}	0.003^{*}	0.003^{*}	0.002^{*}
Coefficient of variation (upper quintile	e) 0.000*	0.001^{*}	0.001^{*}	-0.000	0.000	0.000	0.001^{*}	0.002^{*}	0.002^{*}	0.000	0.001^{*}	0.000
Notes: † and * indicate significance at	t 5% and 1%	levels respe	ectively. Se	e text for a	un explanat	ion on the	constructio	on of predi-	cted probal	oility		
-		•	,		•			•	•	,		
change.												

coefficient as regional inequality measure;	l rank (bottom).
able 6: Fixed effects linear models of the relative ill-health score with the Gini	coefficient estimates (top) and implied change in predicted

		M	en			Woi	men	
Explanatory variable	LUN	S 0	LUN	$\Gamma S \ 1$	NU	$\Gamma S 0$	NU′	TS 1
Coefficient estimates on								
Mean income in region 1.	$.95^{*}$	1.99^{*}	1.16^{*}	1.20^{*}	0.36	0.40	0.25	0.29
(6	6.94)	(7.06)	(4.80)	(4.93)	(1.33)	(1.49)	(1.06)	(1.24)
Gini coefficient 1.	$.35^{*}$	1.35^{*}	0.56^{*}	0.56^{*}	0.94^{*}	0.94^{*}	0.55^{*}	0.55^{*}
(6)	(96.)	(6.97)	(4.11)	(4.12)	(4.95)	(4.97)	(4.14)	(4.14)
Household income		-0.04		-0.04		-0.05		-0.06
		(1.29)		(1.19)		(1.69)		(1.77)
Household income squared		-0.00		-0.00		0.01^{*}		0.01^{*}
		(0.37)		(0.43)		(3.08)		(3.12)
Predicted change in ill-health ($\overline{0}$	conditio	onal) rai	ık					
Mean income effect 0.0	.033*	0.034^{*}	0.025^{*}	0.026^{*}	0.006	0.007	0.005	0.006
Inequality effect 0.0	$.041^{*}$	0.041^{*}	0.013^{*}	0.013^{*}	0.029^{*}	0.029^{*}	0.013^{*}	0.013^{*}
Household income effect		-0.002		-0.002		-0.002		-0.002
ss: Coefficient on mean regional income and	l househd	old income	e multiplie	d by 100,0	00. Coeffi	cient on sc	quared hou	sehold inco
$0e^{10}$. † and * indicate significance at 5% and	ad 1% le	vels respe	ctively. Al	solute z-v	alues in pa	rentheses.	See text f	or an expla
struction of change in predicted ill-health rank	k.							

sure and	tom).
ity mea	nk (bot
inequal	icted ra
regional	in pred
ient as 1	change
i coeffici	implied
the Gini	p) and
e with t	ates (to
th scor	it estim
ill-heal	oefficier
relative	roups; c
s of the	uintile g
r models	come qı
ts linea	with in
ed effec	ı effects
7: Fix	eraction
Table	inte

		TAT				512	TICH	
Explanatory variable	NU	$\Gamma S 0$	EUN	\mathbf{S}	LUN	0 S.	LUN	$\Gamma S \ 1$
befficient estimates on								
Mean income in region	1.93^{*}	1.89^{*}	1.16^{*}	1.13^{*}	0.35	0.41	0.25	0.30
	(6.89)	(6.67)	(4.79)	(4.60)	(1.31)	(1.49)	(1.06)	(1.27)
ini coefficient times lowest fifth	1.43^{*}	1.44^{*}	0.64^{*}	0.65^{*}	0.96*	0.94^{*}	0.56^{*}	0.55^{*}
	(7.37)	(7.40)	(4.66)	(4.72)	(5.03)	(4.97)	(4.23)	(4.11)
ini coefficient times second fifth	1.36^{*}	1.36^{*}	0.56^{*}	0.57^{*}	0.93^{*}	0.92^{*}	0.53^{*}	0.53^{*}
	(7.01)	(7.02)	(4.13)	(4.17)	(4.88)	(4.86)	(4.02)	(3.95)
Gini coefficient times third fifth	1.35^{*}	1.35^{*}	0.56^{*}	0.56^{*}	0.95^{*}	0.95^{*}	0.56^{*}	0.56^{*}
	(6.96)	(6.96)	(4.08)	(4.09)	(5.04)	(5.04)	(4.25)	(4.23)
ini coefficient times fourth fifth	1.32^{*}	1.32^{*}	0.53^{*}	0.53^{*}	0.92^{*}	0.93^{*}	0.53^{*}	0.54^{*}
	(6.81)	(6.79)	(3.87)	(3.85)	(4.86)	(4.89)	(4.01)	(4.05)
ni coefficient times highest fifth	1.31^{*}	1.30^{*}	0.52^{*}	0.51^{*}	0.93^{*}	0.95^{*}	0.54^{*}	0.56^{*}
	(6.76)	(6.68)	(3.80)	(3.70)	(4.89)	(4.97)	(4.05)	(4.18)
Household income		0.04		0.04		-0.06		-0.07
		(1.01)		(1.00)		(1.45)		(1.65)
Household income squared		-0.01		-0.01		0.01^{*}		0.01^{*}
		(1.71)		(1.71)		(2.88)		(3.01)
edicted change in ill-health (conc	litional) 1	rank						
Mean income effect	0.033^{*}	0.032^{*}	0.025^{*}	0.024^{*}	0.006	0.007	0.005	0.006
nequality effect (lower quintile)	0.044^{*}	0.044^{*}	0.015^{*}	0.015^{*}	0.029^{*}	0.029^{*}	0.013^{*}	0.013^{*}
nequality effect (upper quintile)	0.040^{*}	0.040^{*}	0.012^{*}	0.012^{*}	0.028^{*}	0.029^{*}	0.013^{*}	0.013^{*}
Household income effect		0.002		0.002		-0.002		-0.003

by $10e^{10}$. \dagger and * indicate significance at 5% and 1% levels respectively. Absolute z-values in parentheses. See text for an explanation on the construction of change in predicted ill-health rank. Notes: Co

Table 8: Fixed effects linear models: Predicted change in ill-health (conditional) rank using alternative income inequality measures

		M	en			WOI	nen	
Explanatory variable	NU	$\Gamma S 0$	NU	$\Gamma S 1$	NU	$\Gamma S 0$	LUN	IS 1
Strong IIH								
Gini coefficient	0.041^{*}	0.041^{*}	0.013^{*}	0.013^{*}	0.029^{*}	0.029^{*}	0.013^{*}	0.013^{*}
Ratio of 90th to 10th percentile	0.026^{*}	0.026^{*}	0.008^{*}	0.008^{*}	0.012^{+}	0.012^{+}	0.008^{*}	0.008^{*}
Theil index	0.038^{*}	0.038^{*}	0.012^{*}	0.012^{*}	0.028^{*}	0.028^{*}	0.011^{*}	0.011^{*}
Mean Log Deviation index	0.032^{*}	0.032^{*}	0.011^{*}	0.011^{*}	0.021^{*}	0.021^{*}	0.010^{*}	0.010^{*}
Coefficient of variation	0.036^{*}	0.036^{*}	0.010^{*}	0.010^{*}	0.028^{*}	0.028^{*}	0.011^{*}	0.011^{*}
Weak IIH								
Gini coefficient (lower quintile)	0.044^{*}	0.044^{*}	0.015^{*}	0.015^{*}	0.029^{*}	0.029^{*}	0.013^{*}	0.013^{*}
Gini coefficient (upper quintile)	0.040^{*}	0.040^{*}	0.012^{*}	0.012^{*}	0.028^{*}	0.029^{*}	0.013^{*}	0.013^{*}
Ratio of 90th to 10th percentile(lower quintile)	0.029^{*}	0.030^{*}	0.010^{*}	0.010^{*}	0.013^{+}	0.013	0.009^{*}	0.008^{*}
Ratio of 90th to 10th percentile (upper quintile)	0.024^{*}	0.024^{*}	0.007^{*}	0.006^{+}	0.012^{+}	0.013	0.008^{*}	0.009^{*}
Theil index (lower quintile)	0.043^{*}	0.043^{*}	0.015^{*}	0.016^{*}	0.029^{*}	0.029^{*}	0.012^{*}	0.012^{*}
Theil index (upper quintile)	0.035^{*}	0.035^{*}	0.010^{*}	0.010^{*}	0.027^{*}	0.028^{*}	0.011^{*}	0.012^{*}
Mean Log Deviation index (lower quintile)	0.038^{*}	0.038^{*}	0.014^{*}	0.015^{*}	0.023^{*}	0.022^{*}	0.010^{*}	0.010^{*}
Mean Log Deviation index (upper quintile)	0.030^{*}	0.029^{*}	0.009^{*}	0.008^{*}	0.020^{*}	0.021^{*}	0.009^{*}	0.010^{*}
Coefficient of variation (lower quintile)	0.038^{*}	0.039^{*}	0.012^{*}	0.012^{*}	0.028^{*}	0.028^{*}	0.011^{*}	0.011^{*}
Coefficient of variation (upper quintile)	0.035^{*}	0.034^{*}	0.009^{*}	0.009^{*}	0.028^{*}	0.028^{*}	0.011^{*}	0.011^{*}
Notes: † and * indicate significance at 5% and 1% level	s respective	ely. See te	xt for an €	explanation	t on the cc	Instruction	of change	in predicted

ill-health rank.

5 Tables Appendix

atio as	
percentile r	bottom).
0 10th	bility (
90th t	l proba
ith the	redicted
ealth w	ge in p
poor h	ed chan
orting	d implie
y of rep	op) and
probability	estimates (t
of the	icient e
nodels	e; coeff
probit 1	measur
effects	quality
Random	gional inec
A1:	reg
Table	

			W	en					Woi	nen		
		0 SLUN			NUTS 1			0 SLUN			NUTS 1	
Coefficient estimates on												
Mean income in region	4.97^{*}	5.43^{*}	7.85^{*}	-0.28	0.89	1.46_{1}	4.55^{*}	3.93^{*}	8.59^{*}	-0.75	-0.39	1.85^{*}
	(6.30)	(06.9)	(7.75)	(0.50)	(1.63)	(2.15)	(6.35)	(5.72)	(9.66)	(1.52)	(0.80)	(3.11)
Ratio of 90th to 10th percentile	0.21^{*}	0.19^{*}	0.16^{*}	0.05^{*}	0.07^{*}	0.05^{+}	0.23^{*}	0.20^{*}	0.13^{*}	0.05^{*}	0.06^{*}	0.03
	(8.49)	(7.23)	(4.06)	(3.02)	(3.79)	(2.36)	(9.94)	(8.73)	(3.96)	(2.93)	(3.89)	(1.84)
Household income	-3.62*	-2.63*	-2.63*	-3.48*	-2.53^{*}	-2.53^{*}	-2.93^{*}	-1.77*	-1.77*	-2.83*	-1.67*	-1.67^{*}
	(23.03)	(16.93)	(16.88)	(21.94)	(16.15)	(16.15)	(20.72)	(13.01)	(12.98)	(20.32)	(12.13)	(12.14)
Household income squared	0.30^{*}	0.21^{*}	0.21^{*}	0.29^{*}	0.21^{*}	0.21^{*}	0.27^{*}	0.17^{*}	0.17^{*}	0.27*	0.16^{*}	0.16^{*}
	(14.80)	(10.38)	(10.42)	(14.08)	(9.85)	(9.87)	(15.84)	(9.94)	(9.96)	(15.19)	(9.31)	(9.35)
Control for individual char.	no	yes	yes	no	\mathbf{yes}	\mathbf{yes}	ou	\mathbf{yes}	yes	no	yes	\mathbf{yes}
Control for regime-type effects	no	ou	yes	no	no	\mathbf{yes}	ou	no	\mathbf{yes}	no	no	\mathbf{yes}
Predicted change in probability \overline{c}	of poor he	alth										
Mean income effect	0.001^{*}	0.001^{*}	0.002^{*}	-0.000	0.000	0.000	0.002^{*}	0.002^{*}	0.003^{*}	-0.000	-0.000	0.001^{*}
Inequality effect	0.001^{*}	0.001^{*}	0.001^{*}	0.000*	0.000^{*}	0.000^{+}	0.004^{*}	0.004^{*}	0.002^{*}	0.001^{*}	0.001^{*}	0.000
Household income effect	-0.002^{*}	-0.002*	-0.001^{*}	-0.002*	-0.002*	-0.002^{*}	-0.003*	-0.002^{*}	-0.002*	-0.003^{*}	-0.002*	-0.002*
Notes: Coefficient on	mean regio	nal income	and househe	old income	multiplied l	by 100,000.	Coefficient	on squared	household	income mu	ltiplied	
by 10e ¹⁰ . † and * ind	licate signifi	cance at 5%	and 1% le	vels respect	ively. Abso	lute z-value	s in parent]	neses. See t	ext for an e	explanation	on the	
construction of predict	ted probabil	ity change.										

			W	en					Wor	nen		
		0 SLUN			NUTS 1			NUTS 0			NUTS 1	
Coefficient estimates on												
Mean income in region	4.67^{*}	6.69*	10.66^{*}	-0.32	1.28_{-}^{+}	1.80^{*}	4.65^{*}	5.25^{*}	11.83^{*}	-0.51	0.16	2.31^{*}
	(6.05)	(8.70)	(10.29)	(0.56)	(2.31)	(2.65)	(6.66)	(7.84)	(12.97)	(1.01)	(0.33)	(3.88)
Theil index	4.59^{*}	5.61^{*}	7.30^{*}	1.22^{*}	2.11^{*}	1.76^{*}	5.38^{*}	5.99*	7.43^{*}	1.41^{*}	2.22^{*}	1.61^{*}
	(8.34)	(9.89)	(8.81)	(2.88)	(4.96)	(3.51)	(10.58)	(11.94)	(10.18)	(3.71)	(5.86)	(3.66)
Household income	-3.64*	-2.63*	-2.62*	-3.48*	-2.53^{*}	-2.53^{*}	-2.94^{*}	-1.78*	-1.77*	-2.83*	-1.67*	-1.67*
	(23.12)	(16.98)	(16.86)	(21.97)	(16.14)	(16.13)	(20.88)	(13.12)	(13.04)	(20.35)	(12.15)	(12.13)
Household income squared	0.30^{*}	0.21^{*}	0.21^{*}	0.29^{*}	0.21^{*}	0.21^{*}	0.27^{*}	0.17^{*}	0.17^{*}	0.27^{*}	0.16^{*}	0.16^{*}
	(14.89)	(10.39)	(10.40)	(14.09)	(9.81)	(9.84)	(15.92)	(9.98)	(66.6)	(15.17)	(9.29)	(9.32)
Control for individual char.	no	yes	\mathbf{yes}	ou	yes	\mathbf{yes}	ou	yes	\mathbf{yes}	no	\mathbf{yes}	yes
Control for regime-type effects	ou	no	\mathbf{yes}	ou	ou	\mathbf{yes}	ou	no	\mathbf{yes}	no	no	yes
Predicted change in probability	of poor he	ealth										
Mean income effect	0.001^{*}	0.002^{*}	0.002^{*}	-0.000	0.000	0.001^{*}	0.002^{*}	0.003^{*}	0.005^{*}	-0.000	0.000	0.001^{*}
Inequality effect	0.001^{*}	0.002^{*}	0.002^{*}	0.000^{*}	0.001^{*}	0.001^{*}	0.004^{*}	0.005^{*}	0.004^{*}	0.001^{*}	0.002^{*}	0.001^{*}
Household income effect	-0.002^{*}	-0.002^{*}	-0.001^{*}	-0.002^{*}	-0.002^{*}	-0.002^{*}	-0.003^{*}	-0.002^{*}	-0.002^{*}	-0.003^{*}	-0.002^{*}	-0.002^{*}

Table A2: Random effects probit models of the probability of reporting poor health with the Theil index as regional inequality measure; coefficient estimates (top) and implied change in predicted probability (bottom).
--

 -0.002° -0.002° -0.003° -0.002° Notes: Coefficient on mean regional income and household income multiplied by 100,000. Coefficient on squared household income multiplied by $10e^{10}$ \ddagger and * indicate significance at 5% and 1% levels respectively. Absolute z-values in parentheses. See text for an explanation on the -0.003^{*} construction of predicted probability change.

			M	en					Woi	men		
		0 SLUN			NUTS 1			NUTS 0			NUTS 1	
Coefficient estimates on												
Mean income in region	4.85^{*}	7.06^{*}	9.91^{*}	-0.18	1.61^{*}	2.12^{*}	4.73^{*}	5.51^{*}	10.81^{*}	-0.44	0.39	2.53^{*}
	(6.27)	(9.14)	(9.97)	(0.32)	(2.92)	(3.15)	(6.76)	(8.19)	(12.33)	(0.88)	(0.81)	(4.27)
Mean Log Deviation index	4.07^{*}	5.12^{*}	6.04^{*}	1.17^{*}	2.16^{*}	1.92^{*}	4.68^{*}	5.35*	5.74^{*}	1.26^{*}	2.12^{*}	1.66*
	(8.61)	(10.49)	(8.79)	(3.33)	(6.12)	(4.82)	(10.71)	(12.39)	(9.46)	(4.01)	(6.74)	(4.71)
Household income	-3.63*	-2.64*	-2.63^{*}	-3.48*	-2.52*	-2.53^{*}	-2.94^{*}	-1.79^{*}	-1.78*	-2.83*	-1.67*	-1.67*
	(23.08)	(16.98)	(16.89)	(21.96)	(16.12)	(16.10)	(20.82)	(13.14)	(13.06)	(20.34)	(12.14)	(12.12)
Household income squared	0.30^{*}	0.21^{*}	0.22^{*}	0.29*	0.21^{*}	0.21^{*}	0.27*	0.17^{*}	0.17*	0.27*	0.16^{*}	0.16^{*}
	(14.88)	(10.42)	(10.45)	(14.09)	(9.80)	(9.83)	(15.93)	(10.01)	(10.02)	(15.16)	(9.30)	(9.32)
Control for individual char.	no	\mathbf{yes}	yes	ou	yes	\mathbf{yes}	no	\mathbf{yes}	\mathbf{yes}	ou	\mathbf{yes}	yes
Control for regime-type effects	no	ou	yes	ou	ou	yes	no	no	yes	no	no	yes
Predicted change in probability	of poor h	ealth										
Mean income effect	0.001^{*}	0.002^{*}	0.002^{*}	-0.000	0.000^{*}	0.001^{*}	0.002^{*}	0.003^{*}	0.004^{*}	-0.000	0.000	0.001^{*}
Inequality effect	0.001^{*}	0.002^{*}	0.002^{*}	0.000^{*}	0.001^{*}	0.001^{*}	0.004^{*}	0.005^{*}	0.004^{*}	0.001^{*}	0.002^{*}	0.001^{*}
Household income effect	-0.002^{*}	-0.002^{*}	-0.001^{*}	-0.002^{*}	-0.002*	-0.002*	-0.003*	-0.002^{*}	-0.002*	-0.003^{*}	-0.002*	-0.002*
Notes: Coefficient on	n mean regi	onal income	and house	hold income	e multiplied	by 100,000	. Coefficier	nt on square	ed househol	d income m	ultiplied	
by $10e^{10}$. \dagger and $*$ ir	ndicate signi	ificance at 5	% and 1%	levels respec	ctively. Ab	solute z-valı	tes in parer	theses. See	text for an	explanatio	n on the	
construction of predi	cted probab	ility change.										

as	
lex	
inc	
n).	
viat	
g-de	
Log lity	
ean babi	Vound
e M prol	
the ted	
vith edic	
th v i pre	
iealt se in	
or ł iang	
c po d cł	
ting plie	
spor l im	
of re anc	
ty (top)	
abili es (1	
rob mat	
ne p esti	
of tl ent	
els (iffici	
node coe	
it r ure;	
prok neas	
ty n	
effe uali	
om ineq	
ando nal j	
B. R.	
$\mathbf{A3}$	
ble	
Ta	

<u> </u>
ab]

			M	en					Woi	men		
		0 SLUN			NUTS 1			NUTS 0			NUTS 1	
Coefficient estimates on												
Mean income in region	4.10^{*}	5.95^{*}	10.65^{*}	-0.38	1.09^{+}	1.62^{+}	3.88^{*}	4.41^{*}	11.83^{*}	-0.52	0.01	2.19^{*}
	(5.52)	(8.09)	(10.24)	(0.69)	(2.01)	(2.41)	(5.80)	(6.86)	(12.94)	(1.06)	(0.03)	(3.72)
Coefficient of variation	1.86^{*}	2.26^{*}	3.17^{*}	0.53^{*}	0.86^{*}	0.68^{*}	2.15^{*}	2.39^{*}	3.26^{*}	0.65^{*}	0.94^{*}	0.67*
	(7.94)	(9.37)	(8.68)	(2.89)	(4.68)	(3.10)	(9.88)	(11.14)	(10.10)	(3.95)	(5.75)	(3.46)
Household income	-3.64*	-2.64^{*}	-2.62^{*}	-3.48*	-2.53^{*}	-2.53*	-2.95^{*}	-1.78*	-1.77*	-2.83*	-1.67^{*}	-1.67*
	(23.13)	(17.01)	(16.87)	(21.98)	(16.16)	(16.14)	(20.95)	(13.12)	(13.05)	(20.38)	(12.16)	(12.14)
Household income squared	0.30^{*}	0.21^{*}	0.21^{*}	0.29^{*}	0.21^{*}	0.21^{*}	0.28^{*}	0.17^{*}	0.17^{*}	0.27*	0.16^{*}	0.16^{*}
	(14.89)	(10.39)	(10.39)	(14.10)	(9.82)	(9.85)	(15.93)	(9.96)	(9.97)	(15.16)	(9.29)	(9.32)
Control for individual char.	no	\mathbf{yes}	\mathbf{yes}	ou	\mathbf{yes}	\mathbf{yes}	ou	yes	\mathbf{yes}	ou	\mathbf{yes}	yes
Control for regime-type effects	no	ou	\mathbf{yes}	ou	no	\mathbf{yes}	ou	no	\mathbf{yes}	ou	ou	yes
Predicted change in probability	of poor h	ealth										
Mean income effect	0.001^{*}	0.001^{*}	0.002^{*}	-0.000	0.000	0.000	0.002^{*}	0.002^{*}	0.004^{*}	-0.000	0.000	0.001^{*}
Inequality effect	0.001^{*}	0.002^{*}	0.002^{*}	0.000^{*}	0.001^{*}	0.000*	0.003^{*}	0.004^{*}	0.004^{*}	0.001^{*}	0.001^{*}	0.001^{*}
Household income effect	-0.002*	-0.002*	-0.001^{*}	-0.002*	-0.002*	-0.002*	-0.004*	-0.002*	-0.001^{*}	-0.003*	-0.002*	-0.002*
Notes: Coefficient or	n mean regi	onal income	and house	hold income	e multiplied	by 100,000). Coefficie	nt on square	d househol	d income m	ultiplied	
by $10e^{10}$. \dagger and $*$ in	dicate sign	ificance at 5	% and $1%$	levels respe	ctively. Abs	solute z-val	ues in pareı	ntheses. See	text for an	explanatio	n on the	
construction of predi-	cted probab	ility change										

			M	en					Woi	nen		
Explanatory variable		0 SLUN			NUTS 1			0 SLUN			NUTS 1	
Coefficient estimates on												
Mean income in region	2.44^{*}	3.54^{*}	6.00^{*}	-1.74*	-0.18	0.95	2.39^{*}	2.63^{*}	7.32^{*}	-1.84*	-1.07	1.53^{*}
	(3.04)	(4.39)	(5.86)	(3.06)	(0.33)	(1.40)	(3.26)	(3.76)	(8.15)	(3.69)	(2.21)	(2.59)
90/10 perc. ratio times lowest fifth	0.29^{*}	0.24^{*}	0.20^{*}	0.11^{*}	0.11^{*}	0.09^{*}	0.28^{*}	0.23^{*}	0.16^{*}	0.09^{*}	0.09^{*}	0.06^{*}
	(11.25)	(9.08)	(5.22)	(6.43)	(6.19)	(4.45)	(11.97)	(6.60)	(4.82)	(5.64)	(5.58)	(3.46)
90/10 perc. ratio times second fifth	0.25^{*}	0.21^{*}	0.18^{*}	0.08^{*}	0.09^{*}	0.06*	0.25^{*}	0.21^{*}	0.15^{*}	0.07^{*}	0.07^{*}	0.04^{+}
	(10.03)	(8.19)	(4.58)	(4.70)	(4.93)	(3.21)	(10.94)	(9.33)	(4.33)	(4.13)	(4.62)	(2.42)
90/10 perc. ratio times third fifth	0.21^{*}	0.18^{*}	0.14^{*}	0.03	0.05^{*}	0.02	0.23^{*}	0.20^{*}	0.13^{*}	0.04	0.06^{*}	0.02
	(8.09)	(6.75)	(3.59)	(1.87)	(2.73)	(1.17)	(9.65)	(8.50)	(3.76)	(2.34)	(3.49)	(1.27)
90/10 perc. ratio times fourth fifth	0.17^{*}	0.15^{*}	0.12^{*}	-0.01	0.03	-0.00	0.18^{*}	0.17^{*}	0.10^{*}	-0.01	0.03	-0.01
	(6.51)	(5.88)	(2.99)	(0.29)	(1.48)	(0.03)	(7.80)	(7.32)	(2.96)	(0.37)	(1.72)	(0.47)
90/10 perc. ratio times highest fifth	0.11^{*}	0.12^{*}	0.08	-0.06*	-0.01	-0.04	0.15^{*}	0.15^{*}	0.08^{+}	-0.04	0.01	-0.03
	(4.31)	(4.26)	(1.95)	(2.99)	(0.72)	(2.05)	(6.05)	(6.20)	(2.28)	(2.37)	(0.37)	(1.80)
Household income	-0.91^{*}	-0.77*	-0.75*	-0.91^{*}	-0.74*	-0.64^{*}	-0.85*	-0.55*	-0.52*	-0.92*	-0.53*	-0.38
	(3.99)	(3.38)	(3.32)	(4.02)	(3.32)	(2.88)	(4.10)	(3.01)	(2.88)	(4.61)	(2.96)	(2.22)
Household income squared	0.07	0.06	0.06	0.07	0.06	0.05	0.09^{*}	0.06*	0.06^{*}	0.10^{*}	0.06^{*}	0.05^{*}
	(2.50)	(1.93)	(1.87)	(2.57)	(1.87)	(1.51)	(4.22)	(3.31)	(3.21)	(4.54)	(3.27)	(2.69)
Control for individual char.	no	yes	yes	no	\mathbf{yes}	yes	$\mathbf{n}0$	yes	\mathbf{yes}	no	yes	\mathbf{yes}
Control for regime-type effects	no	no	\mathbf{yes}	no	ou	yes	$\mathbf{n}0$	no	\mathbf{yes}	no	no	\mathbf{yes}
Predicted change in probability of p	oor health											
Mean income effect	0.000^{*}	0.001^{*}	0.001^{*}	-0.000*	-0.000	0.000	0.001^{*}	0.001^{*}	0.003^{*}	-0.001^{*}	-0.001	0.001^{*}
Inequality effect (lower quintile)	0.004^{*}	0.003^{*}	0.002^{*}	0.001^{*}	0.001^{*}	0.001^{*}	0.007^{*}	0.006^{*}	0.003^{*}	0.002^{*}	0.002^{*}	0.001^{*}
Inequality effect (upper quintile)	0.000*	0.000^{*}	0.000	-0.000*	-0.000	-0.000+	0.001^{*}	0.002^{*}	0.001	-0.000	0.000	-0.000
Household income effect	-0.000*	-0.000*	-0.000*	-0.000*	-0.000*	-0.000*	-0.001^{*}	-0.001^{*}	-0.000*	-0.001*	-0.001^{*}	+000.0-
Notes: Coefficient on mea	an regional i	ncome and	household in	ncome multi	iplied by 10	00,000. Co∈	fficient on s	squared hou	sehold inco	me multipli	pa	
hy $10^{\circ}10^{\circ} \pm 30^{\circ}d^{\circ}$	a sionificano	e at 5% and	1 1% lovels	raenaetimalu	A hsolute	ni seuleu-z	narentheses	See text f	olano ao ao	tion on t	۲. ۲	

construction of predicted probability change.

Table A5: Random effects probit models of the probability of reporting poor health with the 90th to 10th percentile ratio as regional inequality measure and interaction effects with income quintile groups; coefficient estimates (top) and implied change in predicted probability (bottom).

				.(1110)							
		Me	en					Woi	nen		
	0 STUN			NUTS 1			0 SLUN			NUTS 1	
2.36^{*}	4.91^{*}	8.95^{*}	-1.55^{*}	0.34	1.39_{\pm}	2.73^{*}	4.03^{*}	10.68^{*}	-1.39*	-0.43	2.05^{*}
(3.03)	(6.24)	(8.56)	(2.72)	(0.60)	(2.04)	(3.83)	(5.91)	(11.62)	(2.78)	(0.88)	(3.46)
6.86^{*}	7.18^{*}	8.76^{*}	3.27^{*}	3.60^{*}	3.15^{*}	6.87^{*}	6.95^{*}	8.39^{*}	2.79^{*}	3.10^{*}	2.51^{*}
(12.02)	(12.22)	(10.42)	(7.32)	(7.97)	(6.08)	(13.15)	(13.45)	(11.33)	(7.02)	(7.81)	(5.56)
5.90^{*}	6.43*	8.02^{*}	2.38^{*}	2.91^{*}	2.43^{*}	6.17^{*}	6.48^{*}	7.91^{*}	2.14^{*}	2.68^{*}	2.03^{*}
(10.51)	(11.11)	(9.59)	(5.39)	(6.55)	(4.72)	(11.98)	(12.70)	(10.75)	(5.45)	(6.82)	(4.49)
4.49^{*}	5.35^{*}	6.93^{*}	0.93^{+}_{-}	1.77^{*}	1.26_{-}^{+}	5.34^{*}	5.94^{*}	7.36^{*}	1.36^{*}	2.19^{*}	1.47^{*}
(8.00)	(9.25)	(8.28)	(2.09)	(3.97)	(2.42)	(10.34)	(11.62)	(9.99)	(3.45)	(5.54)	(3.23)
3.33^{*}	4.69^{*}	6.26^{*}	-0.25	1.09_{1}	0.53	4.12^{*}	5.17^{*}	6.57^{*}	0.12	1.38^{*}	0.58
(5.90)	(8.05)	(7.45)	(0.56)	(2.39)	(0.99)	(7.89)	(10.00)	(8.86)	(0.29)	(3.43)	(1.25)
1.80^{*}	3.57^{*}	5.12^{*}	-1.82*	-0.13	-0.77	3.10^{*}	4.55^{*}	5.95^{*}	-0.92^{+}	0.73	-0.18
(3.01)	(5.76)	(5.91)	(3.65)	(0.26)	(1.35)	(5.61)	(8.33)	(7.81)	(2.07)	(1.66)	(0.36)
-1.03^{*}	-0.84*	-0.81^{*}	-1.02^{*}	-0.80*	-0.71*	-1.00^{*}	-0.60*	-0.57^{*}	-1.06^{*}	-0.59*	-0.45^{*}
(4.61)	(3.73)	(3.68)	(4.56)	(3.62)	(3.25)	(5.11)	(3.29)	(3.17)	(5.66)	(3.26)	(2.63)
0.08^{*}	0.06^{+}	0.06^{+}	0.08^{*}	0.06^{+}	0.05	0.10^{*}	0.07^{*}	0.06^{*}	0.11^{*}	0.07^{*}	0.05^{*}
(2.94)	(2.14)	(2.08)	(2.95)	(2.05)	(1.77)	(4.82)	(3.52)	(3.42)	(5.12)	(3.52)	(3.01)
no	\mathbf{yes}	yes	no	yes	yes	ou	\mathbf{yes}	\mathbf{yes}	no	yes	\mathbf{yes}
no	no	yes	no	no	yes	no	ou	\mathbf{yes}	no	no	\mathbf{yes}
poor hea	$_{ m lth}$										
0.000^{*}	0.001^{*}	0.002^{*}	-0.000*	0.000	0.000^{+}	0.001^{*}	0.002^{*}	0.004^{*}	-0.001^{*}	-0.000	0.001^{*}
0.005^{*}	0.004^{*}	0.005^{*}	0.002^{*}	0.002^{*}	0.001^{*}	0.008^{*}	0.008^{*}	0.007^{*}	0.003^{*}	0.003^{*}	0.002^{*}
0.000^{*}	0.001^{*}	0.001^{*}	-0.000*	-0.000	-0.000	0.001^{*}	0.002^{*}	0.002^{*}	-0.000^{+}	0.000	-0.000
-0.000*	-0.000*	-0.000*	-0.000*	-0.000*	-0.000*	-0.001^{*}	-0.001*	-0.000*	-0.001^{*}	-0.001*	-0.000†
ean region	al income a	nd househol	ld income n	ultiplied by	100,000.	Coefficient o	n squared	household i	ncome mult	iplied	
te signific	ance at 5%	and 1% lev	els respectiv	velv. Absolı	ite z-values	in parenthe	ses. See te	xt for an ea	colanation o	n the	
	2.36* (3.03) 6.86* (3.03) 5.90* (12.02) 5.90* (10.51) 4.49* (10.51) 1.80* (5.90) 1.80* (5.90) 1.80* (2.94) no no no no no no no no no sorrhea no no no sorrhea no no no no sorrhea no no no no no no no no no no no no no	NUTS 0 $2.36*$ $4.91*$ $2.36*$ $4.91*$ (3.03) (6.24) $6.86*$ $7.18*$ (12.02) (12.22) $5.90*$ $6.43*$ (10.51) (11.11) $4.49*$ $5.35*$ (3.00) (9.25) $3.33*$ $4.69*$ (5.90) (8.05) $1.80*$ $3.57*$ (5.91) (8.05) $1.80*$ $3.57*$ (2.94) (2.14) $1.03*$ $0.06\dagger$ $0.08*$ $0.004*$ $0.000*$ $0.001*$ $0.000*$ $0.001*$ $0.000*$ $0.001*$ $0.000*$ $0.001*$ $0.000*$ $0.001*$ $0.000*$ $0.001*$ $0.000*$ $0.001*$ $0.000*$ $0.001*$ $0.000*$ $0.001*$ $0.000*$ $0.001*$ $0.000*$ $0.001*$ $0.000*$ $0.001*$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Men Men NUTS 0 Men 2.36* 4.91* $8.95*$ $-1.55*$ (3.03) (6.24) 8.566 2.72) 6.86* 7.18* $8.76*$ $3.27*$ (12.02) (12.22) (10.42) (7.32) 5.90* 6.43* $8.02*$ $2.38*$ (10.51) (11.11) (9.59) (5.39) 4.49* 5.35* 6.93* 0.93† (8.00) (9.25) (8.28) (2.09) 3.33* 4.69* 6.26* -0.25 (1.0.51) (11.11) (9.591) (3.65) 1.80* 3.57* 5.12* $-1.02*$ (3.01) (5.76) (5.91) (3.65) 1.03* $-0.84*$ $-0.81*$ $-1.02*$ 1.103* $-0.84*$ -0.208 (2.95) 0.08* 0.06^{\dagger} 0.06^{\dagger} $0.02*$ 0.08* 0.06^{\dagger} $0.02*$ -0.295 0.08* $0.06^$	Men Men NUTS 0 MuTS 1 3.36^{*} 4.91^{*} 8.95^{*} -1.55^{*} 0.34 3.36^{*} 4.91^{*} 8.95^{*} -1.55^{*} 0.34 3.03 (6.24) 8.56 2.72 (0.60) 6.86^{*} 7.18^{*} 8.02^{*} 3.27^{*} 3.60^{*} (12.02) (12.22) (10.42) (7.32) (7.97) 5.90^{*} 6.43^{*} 8.02^{*} 2.33^{*} 2.91^{*} (10.51) (11.11) (9.59) (7.32) (7.97) 5.90^{*} 6.43^{*} 8.02^{*} 2.33^{*} 2.91^{*} (10.51) (11.11) (9.59) (7.32) (7.97) 3.33^{*} 4.69^{*} 5.35^{*} (2.99) (3.97) 3.33^{*} 4.69^{*} 5.12^{*} -1.22^{*} 1.97^{*} $3.01)$ (5.76) (2.99) (3.01) (3.62) 0.00^{*} (1.80^{*})	Men Men NUTS 0 Men 1000 100 NUTS 1 2.36* 4.91* 8.95* -1.55* 0.34 1.39† 2.36* 4.91* 8.95* -1.55* 0.34 1.39† 2.36* 7.18* 8.76* 3.27* 3.60* 3.15* 6.86* 7.18* 8.76* 3.27* 3.60* 3.15* (10.51) (11.11) (9.59) (5.39) (6.55) (4.72) 4.49* 5.35* 6.93* 0.93† 1.77* 1.26† (8.00) (9.25) (8.28) (2.09) (3.97) (2.42) (8.00) (9.25) (7.45) (0.56) (2.42) (3.57) (10.51) (11.11) (9.56) (7.45) (1.75) (10.51) (11.11) (9.56) (2.72) (1.77) (10.51) (11.11) (9.56) (0.26) (1.75) (11.33* -0.84* 0.06† 0.06† 0.771	MUTS 0 Men $NUTS 0$ NUTS 1 2.36^{*} 4.91^{*} 8.95^{*} -1.55^{*} 0.34 1.39† 2.73* 2.36^{*} 4.91^{*} 8.560 (2.72) (0.60) (2.04) (3.83) 6.240 8.566 (2.72) (0.60) (2.04) (3.83) 6.86^{*} 7.18* 8.76^{*} 3.27* 3.60^{*} 3.115* 6.87* 5.90^{*} 6.43* 8.02* 2.391* 2.43* 6.17* 5.00^{*} 6.43* 8.02* 2.391* 2.42 (11.31) 5.90^{*} 6.43* 8.02* 2.391 (5.51) (11.31) 5.90^{*} 6.25 (1.177) (11.98) 4.12* 4.49^{*} 5.33* (5.99) (5.91) (5.61) 3.33^{*} 4.69^{*} 6.26^{*} 0.239 (0.75) (11.34) 3.01^{*} 0.550^{*} 0.239^{*} 0.539^{*} 0.103^{*} 0.12^{*} 3	MUTS 0 Men NUTS 1 NUTS 0 3.07 8.95° 1.55° 0.34 1.39° 4.03° 2.36° 4.91° 8.95° 1.55° 0.34 1.39° 4.03° 2.36° 4.91° 8.56° 2.72° 0.60° 2.73° 4.03° 3.03 (6.24) 8.56° 2.72° 0.60° 2.04 3.83° 5.91° 5.90° 7.18° 8.76° 2.72° 0.66° 1.273° 6.95° 5.90° 7.18° 8.02° 2.39° 2.91° 5.34° 5.94° 5.00° 9.39° 1.77° 1.162° 6.37° 5.94° 5.00° 9.39° 1.77° 1.162° 5.34° 5.94° 5.30° 6.32° 0.93° 1.77° 1.00° 1.00° 10.510° (9.32°) $(2.72)^{\circ}$	Men Men NUTS 1 NUTS 0 Wor 2.36* 4.91* 8.95* -1.55 * 0.34 1.39 2.73 * 4.03 * 10.68 * 3.03) (6.24) (8.56) 2.72 0.60 2.04 * 7.01 * 6.86* 7.18^* 8.76^* 3.27^* 3.03 (6.24) (8.56) (2.72) (0.60) (2.04) (3.33) (5.91) (11.65) (10.51) (11.11) (9.59) (5.39) (6.57) (4.72) (11.36) (11.33) (10.51) (11.11) (9.59) (5.39) (6.55) (4.72) (11.36) (11.33) (10.51) (11.11) (9.59) (5.39) (5.51) (11.62) (9.9) (10.51) (11.11) (9.59) (5.91) (11.32) (11.61) (3.73) (3.91) (11.62) (10.51) (12.61) (2.91) (2.91) (11.62) (3.91) (10.51) <td>Men WOTS 1 Wours 1 NUTS 0 Wours 1 Wours 0 2.36% Men Wours 0 2.36% WUTS 1 Wours 0 2.36% V.1.55* 0.34 1.39% Women 2.36% 2.72% 0.6.50% 2.73% 4.0.383 5.39% 2.73% 2.30% 6.37% 6.37% 4.0.34 1.383 C.2.75 0.304 1.39% 2.73% 4.0.383 C.2.75 0.304 1.30% C.2.75 0.060 C.2.75 0.317 6.37% 4.012 0.325 0.3317 C.2.73 0.345 7.138 0.325 0.3317 2.4.327 7.3.10% <th< td=""><td>$\label{eq:hardenergy} Men \\ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td></th<></td>	Men WOTS 1 Wours 1 NUTS 0 Wours 1 Wours 0 2.36% Men Wours 0 2.36% WUTS 1 Wours 0 2.36% V.1.55* 0.34 1.39% Women 2.36% 2.72% 0.6.50% 2.73% 4.0.383 5.39% 2.73% 2.30% 6.37% 6.37% 4.0.34 1.383 C.2.75 0.304 1.39% 2.73% 4.0.383 C.2.75 0.304 1.30% C.2.75 0.060 C.2.75 0.317 6.37% 4.012 0.325 0.3317 C.2.73 0.345 7.138 0.325 0.3317 2.4.327 7.3.10% <th< td=""><td>$\label{eq:hardenergy} Men \\ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td></th<>	$\label{eq:hardenergy} Men \\ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

construction of predicted probability change.

Table A6: Random effects probit models of the probability of reporting poor health with the Theil index as regional inequality measure and interaction effects with income quintile groups; coefficient estimates (top) and implied change in predicted probability

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				W	en					Woi	nen		
$ \begin{array}{c cccc} Coefficient estimates on the standard of the standard set of the standard$	Explanatory variable		0 STUN			NUTS 1			0 STUN			NUTS 1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Coefficient estimates on												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mean income in region	2.61^{*}	5.35^{*}	8.27^{*}	-1.42^{+}	0.67	1.67_{1}	2.88^{*}	4.33^{*}	9.69*	-1.34^{*}	-0.20	2.25^{*}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(3.34)	(6.79)	(8.25)	(2.50)	(1.20)	(2.48)	(4.05)	(6.33)	(10.97)	(2.68)	(0.41)	(3.82)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MLD times lowest fifth	6.08^{*}	6.56^{*}	7.38^{*}	2.83^{*}	3.38^{*}	3.06^{*}	6.02^{*}	6.24^{*}	6.61^{*}	2.37^{*}	2.86^{*}	2.41^{*}
$ \begin{array}{c cccc} \text{MLD times second fifth} & 5.23^{*} & 5.39^{*} & 6.70^{*} & 2.06^{*} & 2.78^{*} & 2.43^{*} & 5.41^{*} & 5.81^{*} & 6.18^{*} & 1.81^{*} & 2.49^{*} & 1.99^{*} \\ \text{MLD times third fifth} & 3.95^{*} & 4.89^{*} & 5.71^{*} & 0.771 & 1.76^{*} & 1.33^{*} & 4.65^{*} & 5.32^{*} & 5.67^{*} & 1.13^{*} & 2.06^{*} & 1.49^{*} \\ \text{MLD times third fifth} & 2.91^{*} & 4.30^{*} & 5.71^{*} & 0.771 & 1.76^{*} & 1.33^{*} & 4.65^{*} & 5.32^{*} & 5.67^{*} & 1.13^{*} & 2.06^{*} & 1.49^{*} \\ \text{MLD times third fifth} & 2.91^{*} & 4.30^{*} & 5.71^{*} & 0.77 & 1.76^{*} & 1.33^{*} & 4.65^{*} & 5.33^{*} & 5.67^{*} & 1.13^{*} & 2.06^{*} & 1.49^{*} \\ \text{(5.94)} & (7.33) & (0.36) & (5.62) & (3.01) & (1.70) & (7.83) & (10.29) & (7.99) & (0.04) & (3.84) & (1.77) \\ \text{(5.94)} & (7.93) & (0.07) & 0.07^{*} & 0.07^{*} & 0.07^{*} & 0.08^{*} & -1.07^{*} & 0.07 \\ \text{(5.03)} & (4.00) & (5.62) & (3.88) & (0.17) & (0.82) & (5.43) & (3.73) & (0.77) & (0.78) \\ \text{Household income} & -1.12^{*} & -0.89^{*} & -0.89^{*} & -1.17^{*} & 0.68^{*} & -1.07^{*} & 0.07^{*} & 0.07^{*} \\ \text{Household income squared & 0.09^{*} & 0.077 & 0.077 & 0.067 & 0.017 & 0.077 & 0.07^{*} & 0.00^{*} & $		(12.35)	(12.90)	(10.55)	(7.63)	(8.98)	(7.34)	(13.36)	(13.95)	(10.71)	(7.19)	(8.62)	(6.60)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MLD times second fifth	5.23^{*}	5.89^{*}	6.70^{*}	2.06^{*}	2.78^{*}	2.43^{*}	5.40^{*}	5.81^{*}	6.18^{*}	1.81^{*}	2.49^{*}	1.99^{*}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(10.80)	(11.76)	(9.66)	(5.63)	(7.52)	(5.89)	(12.15)	(13.17)	(10.08)	(5.54)	(7.58)	(5.44)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MLD times third fifth	3.95^{*}	4.89^{*}	5.71^{*}	0.77_{1}	1.76^{*}	1.38^{*}	4.65^{*}	5.32^{*}	5.67*	1.13^{*}	2.06^{*}	1.49^{*}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(8.15)	(9.80)	(8.22)	(2.07)	(4.72)	(3.30)	(10.45)	(12.04)	(9.25)	(3.42)	(6.20)	(4.04)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MLD times fourth fifth	2.91^{*}	4.30^{*}	5.10^{*}	-0.29	1.16^{*}	0.73	3.53*	4.60^{*}	4.94^{*}	-0.01	1.31^{*}	0.67
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(5.94)	(8.54)	(7.30)	(0.76)	(3.01)	(1.70)	(7.83)	(10.29)	(7.99)	(0.04)	(3.84)	(1.77)
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	MLD times highest fifth	1.53^{*}	3.28^{*}	4.08^{*}	-1.67^{*}	0.07	-0.42	2.63^{*}	4.05^{*}	4.39^{*}	-0.92	0.74	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(2.93)	(6.09)	(5.62)	(3.88)	(0.17)	(0.88)	(5.48)	(8.51)	(6.86)	(2.39)	(1.95)	(0.01)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Household income	-1.12*	-0.89*	-0.87*	-1.15^{*}	-0.89*	-0.80*	-1.07^{*}	-0.63*	-0.60*	-1.16^{*}	-0.63*	-0.50*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(5.03)	(4.00)	(3.96)	(5.21)	(4.06)	(3.70)	(5.62)	(3.42)	(3.30)	(6.32)	(3.49)	(2.88)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Household income squared	0.09^{*}	0.07^{+}_{-}	0.07	0.09^{*}	0.07	0.06+	0.11^{*}	0.07^{*}	0.07^{*}	0.12^{*}	0.07^{*}	0.06^{*}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(3.24)	(2.33)	(2.30)	(3.41)	(2.37)	(2.09)	(5.10)	(3.64)	(3.54)	(5.52)	(3.71)	(3.21)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Control for individual char.	no	\mathbf{yes}	yes	no	\mathbf{yes}	yes	$\mathbf{n}0$	\mathbf{yes}	yes	$\mathbf{n}0$	yes	\mathbf{yes}
$ \begin{array}{c} \label{eq:predicted change in probability of poor health \\ \mbox{Mean income effect} 0.001 {\rm *} 0.001 {\rm *} 0.001 {\rm *} 0.000 {\rm *} 0.000 {\rm *} 0.001 {\rm *} 0.001 {\rm *} 0.002 {\rm *} 0.001 {\rm *} -0.001 {\rm *} -0.001 {\rm *} -0.001 {\rm *} 0.002 {\rm *} \\ \mbox{Inequality effect (lower quintile)} 0.005 {\rm *} 0.005 {\rm *} 0.005 {\rm *} 0.002 {\rm *} 0.002 {\rm *} 0.008 {\rm *} 0.008 {\rm *} 0.006 {\rm *} 0.003 {\rm *} 0.003 {\rm *} 0.002 {\rm *} \\ \mbox{Inequality effect (upper quintile)} 0.000 {\rm *} 0.001 {\rm *} 0.001 {\rm *} 0.000 {\rm *} 0.001 {\rm *} 0.002 {\rm *} 0.002 {\rm *} 0.002 {\rm *} 0.002 {\rm *} 0.000 {\rm *} 0.001 {\rm *} 0.002 {\rm *} 0.001 {\rm *} 0.001 {\rm *} 0.002 {\rm *} 0.002 {\rm *} 0.002 {\rm *} 0.001 {\rm *} 0.$	Control for regime-type effects	no	no	yes	no	no	yes	$\mathbf{n}0$	$\mathbf{n}0$	yes	$\mathbf{n}0$	no	\mathbf{yes}
Mean income effect 0.001^* 0.002^* 0.004^* -0.001^* -0.001^* -0.001^* -0.001^* -0.001^* -0.001^* -0.001^* -0.001^* -0.001^* -0.001^* -0.001^* -0.001^* -0.001^* -0.000^* -0.001^* -0.001^* -0.002^* -0.001^* -0.002^* -0.001^* -0.001^* -0.001^* -0.001^* -0.001^* -0.001^* -0.001^* -0.001^* -0.001^* -0.001^* -0.001^* -0.001^* -0.001^* -0.001^* -0.001^* -0.001^* -0.001^* -0.001^* -0.001^*	Predicted change in probability of	f poor hea	lth										
Inequality effect (lower quintile) 0.005^{*} 0.005^{*} 0.005^{*} 0.002^{*} 0.002^{*} 0.008^{*} 0.008^{*} 0.006^{*} 0.003^{*} 0.003^{*} 0.003^{*} 0.003^{*} 0.003^{*} 0.003^{*} 0.003^{*} 0.002^{*} 0.000^{*} 0.000^{*} 100^{*} 1000^{*} 1000^{*} 1000^{*} 1000^{*} 100^{*} 10	Mean income effect	0.001^{*}	0.001^{*}	0.002^{*}	-0.000	0.000	0.000^{*}	0.001^{*}	0.002^{*}	0.004^{*}	-0.001^{*}	-0.000	0.001^{*}
$ \begin{array}{c} \mbox{Inequality effect (upper quintile) 0.000\dagger 0.001* 0.001* -0.000* 0.000 -0.000 0.001* 0.003* 0.002* -0.000* 0.000 0.000 \\ \mbox{Household income effect -0.001* -0.000* -0.000* -0.000* -0.000* -0.001* -0.001* -0.001* -0.001* -0.001* \\ \mbox{Notes: Coefficient on mean regional income and household income multiplied by 100,000. Coefficient on squared household income multiplied \\ \mbox{by 10e}^{10}.\ \uparrow \ {\rm and}\ * \ {\rm indicate significance at 5\% and 1\% levels respectively. Absolute z-values in parentheses. See text for an explanation on the \\ \mbox{by 10e}^{10}.\ \uparrow \ {\rm and}\ * \ {\rm indicate significance at 5\% and 1\% levels respectively. Absolute z-values in parentheses. See text for an explanation on the \\ \mbox{by 10e}^{10}.\ \uparrow \ {\rm and}\ * \ {\rm indicate significance at 5\% and 1\% levels respectively. Absolute z-values in parentheses. See text for an explanation on the \\ \mbox{by 10e}^{10}.\ \mbox{by 10e}^{1$	Inequality effect (lower quintile)	0.005^{*}	0.005^{*}	0.005^{*}	0.002^{*}	0.002^{*}	0.002^{*}	0.008^{*}	0.008^{*}	0.006^{*}	0.003^{*}	0.003^{*}	0.002^{*}
Household income effect -0.001* -0.000* -0.000* -0.000* -0.000* -0.001* -0.001* -0.001* -0.001* -0.001* -0.001* -0.001* -0.001* b0.001* -0.001*	Inequality effect (upper quintile)	0.000	0.001^{*}	0.001^{*}	-0.000*	0.000	-0.000	0.001^{*}	0.003^{*}	0.002^{*}	-0.000*	0.000	0.000
Notes: Coefficient on mean regional income and household income multiplied by 100,000. Coefficient on squared household income multiplied by $10e^{10}$. \uparrow and $*$ indicate significance at 5% and 1% levels respectively. Absolute z-values in parentheses. See text for an explanation on the	Household income effect	-0.001^{*}	-0.000*	-0.000*	-0.001^{*}	-0.000*	-0.000*	-0.001^{*}	-0.001*	-0.001^{*}	-0.001^{*}	-0.001^{*}	-0.001^{*}
by 10e ¹⁰ . † and * indicate significance at 5% and 1% levels respectively. Absolute z-values in parentheses. See text for an explanation on the	Notes: Coefficient on r	mean region	al income a	nd househol	ld income n	nultiplied by	7 100,000.	Coefficient	on squared	household i	ncome mult	iplied	
	by $10e^{10}$. † and * indi	icate signific	ance at 5%	and 1% lev	els respecti	vely. Absolu	te z-values	in parenthe	eses. See te	ext for an e	splanation o	on the	
		· · ·			•	,		•			-		

Table A7: Random effects probit models of the probability of reporting poor health with the Mean Log-deviation index as regional inequality measure and interaction effects with income quintile groups; coefficient estimates (top) and implied change in

			W	en					Wor	nen		
Explanatory variable		0 SLUN			NUTS 1			0 SLUN			NUTS 1	
Coefficient estimates on												
Mean income in region	1.49_{1}	3.97^{*}	8.75^{*}	-1.83*	0.01	1.16	1.64_{1}	3.06^{*}	10.55^{*}	-1.60^{*}	-0.66	1.91^{*}
	(1.98)	(5.25)	(8.33)	(3.29)	(0.03)	(1.73)	(2.39)	(4.67)	(11.44)	(3.25)	(1.39)	(3.27)
Coefficient of variation times lowest fifth	2.49^{*}	2.67^{*}	3.55^{*}	1.13^{*}	1.29^{*}	1.08^{*}	2.55^{*}	2.65^{*}	3.51^{*}	1.08^{*}	1.20^{*}	0.92^{*}
	(10.46)	(10.91)	(9.66)	(6.08)	(6.87)	(4.84)	(11.66)	(12.19)	(10.84)	(6.48)	(7.23)	(4.75)
Coefficient of variation times second fifth	2.24^{*}	2.48^{*}	3.35*	0.88^{*}	1.10^{*}	0.88^{*}	2.34^{*}	2.52^{*}	3.38*	0.88*	1.08^{*}	0.78^{*}
	(9.45)	(10.18)	(9.15)	(4.77)	(5.90)	(3.96)	(10.79)	(11.64)	(10.46)	(5.34)	(6.52)	(4.03)
Coefficient of variation times third fifth	1.86^{*}	2.19^{*}	3.07^{*}	0.50^{*}	0.80^{*}	0.57^{+}_{-}	2.11^{*}	2.37^{*}	3.24^{*}	0.65^{*}	0.94^{*}	0.63^{*}
	(7.86)	(0.00)	(8.36)	(2.68)	(4.29)	(2.56)	(9.70)	(10.97)	(10.00)	(3.97)	(5.67)	(3.22)
Coefficient of variation times fourth fifth	1.56^{*}	2.02^{*}	2.89^{*}	0.20	0.62^{*}	0.38	1.79^{*}	2.17^{*}	3.03^{*}	0.33^{+}	0.73^{*}	0.40^{+}
	(6.58)	(8.29)	(7.88)	(1.05)	(3.33)	(1.70)	(8.19)	(10.02)	(9.36)	(2.01)	(4.42)	(2.06)
Coefficient of variation times highest fifth	1.17^{*}	1.73^{*}	2.60^{*}	-0.21	0.30	0.04	1.52^{*}	2.02^{*}	2.88^{*}	0.06	0.56^{*}	0.21
	(4.82)	(6.93)	(7.00)	(1.09)	(1.58)	(0.19)	(6.77)	(9.10)	(8.79)	(0.32)	(3.31)	(1.04)
Household income	-0.82*	-0.71*	-0.68*	-0.73*	-0.59^{*}	-0.50^{+}	-0.76*	-0.52^{*}	-0.49*	-0.77*	-0.46^{*}	-0.31
	(3.57)	(3.05)	(3.00)	(3.24)	(2.63)	(2.23)	(3.65)	(2.85)	(2.72)	(3.76)	(2.60)	(1.87)
Household income squared	0.07_{1}^{+}	0.05	0.05	0.06^{+}	0.04	0.04	0.08^{*}	0.06^{*}	0.06^{*}	0.08^{*}	0.06^{*}	0.04
	(2.22)	(1.70)	(1.62)	(1.99)	(1.35)	(1.03)	(3.87)	(3.16)	(3.05)	(3.97)	(2.97)	(2.42)
Control for individual char.	$\mathbf{n}0$	yes	\mathbf{yes}	$\mathbf{n}0$	\mathbf{yes}	\mathbf{yes}	$\mathbf{n}0$	\mathbf{yes}	yes	$\mathbf{n}0$	yes	\mathbf{yes}
Control for regime-type effects	no	$\mathbf{n}0$	\mathbf{yes}	$\mathbf{n}0$	ou	\mathbf{yes}	no	ou	\mathbf{yes}	no	no	\mathbf{yes}
Predicted change in probability of poor hee	alth											
Mean income effect	0.000	0.001^{*}	0.002^{*}	-0.000*	0.000	0.000	0.001	0.002^{*}	0.004^{*}	-0.001^{*}	-0.001	0.001^{*}
Inequality effect (lower quintile)	0.004^{*}	0.004^{*}	0.004^{*}	0.001^{*}	0.002^{*}	0.001^{*}	0.007^{*}	0.007^{*}	0.006^{*}	0.003^{*}	0.003^{*}	0.002^{*}
Inequality effect (upper quintile)	0.000^{*}	0.001^{*}	0.001^{*}	-0.000	0.000	0.000	0.001^{*}	0.002^{*}	0.002^{*}	0.000	0.001^{*}	0.000
Household income effect	-0.000*	-0.000*	-0.000*	-0.000*	-0.000*	+000.0-	-0.001^{*}	-0.001^{*}	-0.000*	-0.001^{*}	-0.001†	-0.000
Notes: Coefficient on mean region	nal income	and househe	old income	multiplied 1	by 100,000.	Coefficient	on squared	household	income mu	ltiplied		
by $10e^{10}$. † and * indicate signifi	icance at 5%	and 1% le	vels respect	ively. Abso	lute z-value	s in parent]	neses. See t	ext for an	explanation	on the		
	-		•	•		•						
construction of predicted probabil	lity change.											

inequality measure and interaction effects with income quintile groups; coefficient estimates (top) and implied change in predicted Table A8: Random effects probit models of the probability of reporting poor health with the Coefficient of variation as regional

		M	en			WOI	men		
Explanatory variable	NU	$\Gamma S 0$	UU.	$\Gamma S 1$	LUN	$\Gamma S 0$	LUN	$\Gamma S 1$	
Coefficient estimates on									
Mean income in region	1.42^{*}	1.47^{*}	1.04^{*}	1.08^{*}	-0.08	-0.04	0.14	0.18	
	(5.42)	(5.54)	(4.37)	(4.50)	(0.31)	(0.14)	(0.60)	(0.78)	
Ratio of 90th to 10th percentile	0.05^{*}	0.05^{*}	0.02^{*}	0.02^{*}	0.02^{+}	0.02^{+}	0.02^{*}	0.02^{*}	
	(4.44)	(4.45)	(3.23)	(3.23)	(2.16)	(2.17)	(3.48)	(3.49)	
Household income		-0.04		-0.04		-0.05		-0.06	
		(1.27)		(1.18)		(1.66)		(1.76)	
Household income squared		-0.00		-0.00		0.01^{*}		0.01^{*}	
		(0.38)		(0.44)		(3.07)		(3.12)	
Predicted change in ill-health (cc	onditional) rank							
Mean income effect	0.024^{*}	0.025^{*}	0.022^{*}	0.023^{*}	-0.001	-0.001	0.003	0.004	
Inequality effect	0.026^{*}	0.026^{*}	0.008^{*}	0.008^{*}	0.012	0.012^{+}	0.008^{*}	0.008^{*}	
Household income effect		-0.002		-0.002		-0.002		-0.002	
Coefficient on mean regional income and	d household	l income n	aultiplied b	by 100,000.	Coefficier	nt on squar	red househ	iold income	multiplied
¹⁰ . \ddagger and * indicate significance at 5% a:	nd 1% leve	ls respecti	vely. Abso	lute z-value	es in paren	theses. Se	e text for a	an explanat	sion on the

2 -Notes: Coefficient on mean regional income and h by $10e^{10}$. \ddagger and * indicate significance at 5% and construction of change in predicted ill-health rank.

		M	en			Wo	men	
Explanatory variable	LUN	$\Gamma S 0$	NU	$\Gamma S 1$	NU	$\Gamma S 0$	NU	$\Gamma S \ 1$
Coefficient estimates on								
Mean income in region	1.99^{*}	2.03^{*}	1.15^{*}	1.19^{*}	0.43	0.48	0.23	0.27
	(7.07)	(7.18)	(4.76)	(4.88)	(1.60)	(1.75)	(0.99)	(1.16)
Theil index	1.43^{*}	1.44^{*}	0.58^{*}	0.58^{*}	1.07^{*}	1.07^{*}	0.56^{*}	0.56^{*}
	(7.16)	(7.17)	(4.17)	(4.17)	(5.45)	(5.46)	(4.14)	(4.15)
Household income		-0.04		-0.04		-0.05		-0.06
		(1.29)		(1.19)		(1.69)		(1.77)
Household income squared		-0.00		-0.00		0.01^{*}		0.01^{*}
		(0.38)		(0.44)		(3.08)		(3.12)
Predicted change in ill-healt	h (condit	ional) ra	nk					
Mean income effect	0.034^{*}	0.034^{*}	0.025^{*}	0.026^{*}	0.007	0.008	0.005	0.006
Inequality effect	0.038^{*}	0.038^{*}	0.012^{*}	0.012^{*}	0.028^{*}	0.028^{*}	0.011^{*}	0.011^{*}
Household income effect		-0.002		-0.002		-0.002		-0.002
Coefficient on mean regional income	and house	nold incom	e multiplie	d by 100,0	00. Coeffi	cient on sc	quared hou	sehold inco
¹⁰ . \dagger and $*$ indicate significance at 5%	and 1% 1	evels respe	ctively. Al	osolute z-v	alues in pa	trentheses.	See text f	or an expla
uction of change in predicted ill-health	لامهم							
uction of change in predicted ill-health	ra.nk.							

		M	en			WOI	nen		
Explanatory variable	NU	$\Gamma S 0$	LUN	$\Gamma S \ 1$	NU.	$\Gamma S 0$	NU	$\Gamma S \ 1$	
Coefficient estimates on									
Mean income in region	1.90^{*}	1.94^{*}	1.15^{*}	1.19^{*}	0.30	0.34	0.22	0.26	
	(6.81)	(6.92)	(4.78)	(4.91)	(1.11)	(1.26)	(0.92)	(1.09)	
Mean Log Deviation index	1.09^{*}	1.09^{*}	0.45^{*}	0.46^{*}	0.72^{*}	0.72^{*}	0.41^{*}	0.41^{*}	
	(6.75)	(6.76)	(4.21)	(4.22)	(4.54)	(4.55)	(3.86)	(3.86)	
Household income		-0.04		-0.04		-0.05		-0.06	
		(1.29)		(1.18)		(1.68)		(1.76)	
Household income squared		-0.00		-0.00		0.01^{*}		0.01^{*}	
		(0.38)		(0.44)		(3.07)		(3.11)	
Predicted change in ill-heal	lth (condit	ional) rai	nk						
Mean income effect	0.032^{*}	0.033^{*}	0.025^{*}	0.026^{*}	0.005	0.006	0.005	0.006	
Inequality effect	0.032^{*}	0.032^{*}	0.011^{*}	0.011^{*}	0.021^{*}	0.021^{*}	0.010^{*}	0.010^{*}	
Household income effect		-0.002		-0.002		-0.002		-0.002	
Notes: Coefficient on mean regional income	and house	nold incom	e multiplie	d by 100,0	00. Coeffi	cient on sc	uared hou	sehold incon	ne multiplied
by $10e^{10}$. \dagger and $*$ indicate significance at 5 ^o	% and 1% 1	evels respe	ctively. Al	solute z-v	alues in pa	rentheses.	See text f	or an explar	ation on the
construction of change in predicted ill-health	ı rank.								

onal inequality	
as regio	
variation	(bottom)
efficient of	licted rank
vith the Co	unge in pred
salth score \mathbf{v}	implied ch
relative ill-h	ies (top) and
s of the 1	nt estimat
ar model	coefficier
effects line	measure;
2: Fixed	
Table A12	

		Μ	en			Wo	men	
Explanatory variable	LUN	$\Gamma S 0$	NU	$\Gamma S 1$	NU	$\Gamma S 0$	NU	TS 1
Coefficient estimates on								
Mean income in region	1.92^{*}	1.96^{*}	1.10^{*}	1.14^{*}	0.41	0.46	0.21	0.25
	(6.88)	(7.00)	(4.59)	(4.72)	(1.53)	(1.68)	(0.90)	(1.08)
Coefficient of variation	0.62^{*}	0.62^{*}	0.23^{*}	0.23^{*}	0.48^{*}	0.48^{*}	0.25^{*}	0.25^{*}
	(6.94)	(6.96)	(3.80)	(3.81)	(5.55)	(5.56)	(4.22)	(4.22)
Household income		-0.04		-0.04		-0.05		-0.06
		(1.29)		(1.19)		(1.69)		(1.77)
Household income squared		-0.00		-0.00		0.01^{*}		0.01^{*}
		(0.38)		(0.44)		(3.07)		(3.11)
Predicted change in ill-heal	th (condit	ional) ra	nk					
Mean income effect	0.033^{*}	0.033^{*}	0.024^{*}	0.025^{*}	0.007	0.008	0.005	0.005
Inequality effect	0.036^{*}	0.036^{*}	0.010^{*}	0.010^{*}	0.028^{*}	0.028^{*}	0.011^{*}	0.011^{*}
Household income effect		-0.002		-0.002		-0.002		-0.002
s: Coefficient on mean regional income	and house	nold incom	e multiplie	d by 100,0	00. Coe⑪	cient on so	quared hou	sehold inco
$0e^{10}$. \dagger and * indicate significance at 5°_{0}	% and 1% 1	evels respe	ctively. Al	osolute z-v	alues in p ⁸	mentheses.	See text f	or an expla
truction of change in predicted ill-health	rank.							
•								

()
-
<u> </u>
()
\sim
1.2
+
1.2
+
()
<u> </u>
\sim
_

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} 1.01 \\ 1.01 \\ 1.01 \\ 1.01 \\ 1.01 \\ 1.01 \\ 1.01 \\ 1.01 \\ 0.02 \\ 0.0 \\ 0.02 \\ 0.0 \\ 0.02 \\ 0.0 \\ 0.02 \\ 0.0 \\ 0.02 \\ 0.0 \\ 0.01 \\ 0.0 \\ 0.01 \\ 0.0 \\ 0.01 \\ 0.0 \\ 0.01 \\ 0.0 \\ $	NUTS 0 09 -0.04 24 (0.14) 28 (2.20) 27 (2.24) 77 (2.04) 29 (2.28) 28 (2.28) 29 (2.28) 29 (2.28) 29 (2.28) 29 (2.28) 21 (2.07) 21 (2.07) 22 (2.07) 23 (2.07)	NUT 0.14 0.02* 0.02* 0.02* 0.02* 0.02* 0.02* 0.02* 0.02* 0.02* 0.02*	$\begin{array}{c c} \text{IS 1} \\ 0.19 \\ 0.02^{*} \\ 0.02^{*} \\ 0.02^{*} \\ 0.02^{*} \\ 0.02^{*} \\ 0.02^{*} \\ 0.02^{*} \\ 0.02^{*} \\ 0.02^{*} \end{array}$
$ \begin{array}{c} \mbox{Coefficient estimates on} & 1.41 * 1.37 * 1.03 * \\ \mbox{Mean income in region} & 1.41 * 1.37 * 1.03 * \\ \mbox{0.05} * 0.05 * 0.05 * 0.02 * \\ \mbox{0.02} * 0.02 * \\ \mbox{0.01} * 0.01 & 0.05 * 0.02 * \\ \mbox{0.02} * 0.02 * \\ \mbox{0.01} * 0.01 & 0.02 * \\ \mbox{0.01} * 0.01 * \\ \mbox{0.01} * \\ \mbox{0.02} * \\ \mbox{0.01} * \\ \mbox{0.01} * \\ \mbox{0.01} * \\ \mbox{0.02} * \\ \mbox{0.01} * \\ \mbox{0.02} * \\ 0.01$	$\begin{array}{c} 1.01 \\ 1.01 \\ (4.19) \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \\ $	09 -0.04 34) (0.14) 24 (0.14) 28 (2.20) 27 (2.04) 27 (2.04) 28 (2.28) 28 (2.28) 29 (0.02† 0.02†	$\begin{array}{c} 0.14\\ 0.14\\ (0.59)\\ 0.02*\\ (3.26)\\ 0.02*\\ (3.26)\\ 0.02*\\ (3.63)\\ 0.02*\\ (3.21)\\ (3.21)\end{array}$	$\begin{array}{c} 0.19\\ (0.81)\\ 0.02^{*}\\ 0.02^{*}\\ 0.02^{*}\\ (3.17)\\ 0.02^{*}\\ (3.63)\\ 0.02^{*}\\ 0.02^{*}\\ 0.02^{*}\\ 0.02^{*}\end{array}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 1.01 \\ (4.19) \\ 0.02 \\ (4.09) \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.000 \\ 0.001 \\ 0.000 \\ 0.001 \\ 0.000 \\ 0.001 \\ 0.000 $	09 -0.04 34) (0.14) 24 0.02† 28) (2.20) 27 0.02† 07) (2.04) 28) (2.04) 29† 0.02† 28) (2.28) 29† 0.02† 21 0.02† 23) (2.07) 21 0.02† 23	$\begin{array}{c} 0.14\\ 0.59\\ 0.02*\\ (3.62)\\ 0.02*\\ (3.26)\\ 0.02*\\ (3.63)\\ 0.02*\\ (3.63)\\ 0.02*\\ (3.63)\\ 0.02*\\ (3.21)\\ \end{array}$	$\begin{array}{c} 0.19\\ (0.81)\\ 0.02^{*}\\ (3.43)\\ 0.02^{*}\\ (3.17)\\ 0.02^{*}\\ (3.63)\\ 0.02^{*}\\ 0.02^{*}\\ 0.02^{*}\end{array}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} (4.19) \\ (0.02^{*}) \\ (4.09) \\ (4.09) \\ (0.02^{*}) \\ (2.07) \\ (2.67) \\ (2.46)$	34) (0.14) 27 0.02† 28) (2.20) 27 0.02† 07) (2.04) 29 0.02† 28) (2.28) 29 0.02† 28) (2.28) 29 0.02† 21 0.02† 21 0.02† 21 0.02† 22 0.02† 23 0.02† 23 0.02† 24 0.02† 26 0.02† 27 0.02† 28 0.0	$\begin{array}{c} (0.59) \\ 0.02* \\ (3.62) \\ 0.02* \\ (3.26) \\ 0.02* \\ (3.63) \\ 0.02* \\ (3.21) \\ (3.21) \end{array}$	$\begin{array}{c} (0.81) \\ 0.02^{*} \\ (3.43) \\ 0.02^{*} \\ (3.17) \\ 0.02^{*} \\ (3.63) \\ 0.02^{*} \\ 0.02^{*} \\ 0.02^{*} \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.02 \\ (4.09) \\ (4.09) \\ 0.02 \\ 0.02 \\ (3.17) \\ (3.17) \\ (2.17) \\ (2.17) \\ (2.17) \\ (2.17) \\ (2.16) \\ 0.02 \\ 0.02 \\ 0.01 \\ (2.46) \\ 0.01 \\ (2.46) \\ (2.46) \\ (2.46) \\ (2.46) \\ (2.46) \\ (2.46) \\ (2.67) \\ (2.46) \\ (2.67) \\ ($	27 0.02 28 (2.20) 27 0.02 27 0.02 28 (2.04) 27 0.02 28 (2.28) 28 (2.28) 29 0.02 21 0.02 21 0.02 21 0.02	$\begin{array}{c} 0.02 \\ (3.62) \\ 0.02 \\ (3.26) \\ 0.02 \\ (3.63) \\ 0.02 \\ (3.21) \end{array}$	$\begin{array}{c} 0.02 \\ (3.43) \\ 0.02 \\ (3.17) \\ 0.02 \\ (3.63) \\ 0.02 \\ (3.29) \\ 0.02 \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} (4.09) \\ (0.02^{*}) \\ (0.02^{*}) \\ (3.17) \\ (3.17) \\ (3.17) \\ (2.17) \\ (2.17) \\ (2.17) \\ (2.16) \\ (2.146) \\ $	28) (2.20) 27 0.02† 07) (2.04) 24 0.02† 28) (2.28) 28) (2.28) 27 0.02† 03) (2.07) 24 0.02† 24 0.02†	$\begin{array}{c} (3.62)\\ 0.02*\\ (3.26)\\ 0.02*\\ (3.63)\\ 0.02*\\ (3.21)\\ \end{array}$	$\begin{array}{c} (3.43) \\ 0.02^{*} \\ (3.17) \\ 0.02^{*} \\ (3.63) \\ 0.02^{*} \\ (3.29) \\ 0.02^{*} \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.02 \\ 0.02 \\ (3.17) \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ $	2† 0.02† 77 (2.04) 2† 0.02† 28) (2.28) 28) (2.28) 28) (2.28) 21 0.02† 0.02† 21 0.02† 21 0.02† 21 0.02† 21 0.02† 21 0.02† 22 0.02† 21 0.02† 22 0.02† 22 0.02† 23 0.02† 23 0.02† 23 0.02† 23 0.02† 23 0.02† 23 0.02† 24 0.02† 25 0.02† 26 0.02† 26 0.02† 27 0.02† 28 0.02† 20 0.02† 28 0.02† 20 0.02† 20 0.02† 20 0.02† 20 0.02† 28 0.02† 20 000\$	$\begin{array}{c} 0.02 \\ (3.26) \\ 0.02 \\ (3.63) \\ 0.02 \\ (3.21) \end{array}$	$\begin{array}{c} 0.02^{*} \\ (3.17) \\ 0.02^{*} \\ (3.63) \\ 0.02^{*} \\ (3.29) \\ 0.02^{*} \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} (3.17) & (2.0) \\ 0.02^* & 0.0 \\ (3.05) & (2.0) \\ 0.02^* & 0.0 \\ 0.02^* & 0.0 \\ 0.01^+ & 0.0 \\ (2.46) & (2.0) \\ (2.46) & (2.0) \\ \end{array}$	77) (2.04) 27) (2.04) 28) (2.28) 28) (2.28) 27) 0.02† 03) (2.07) 24) 0.02†	$\begin{array}{c} (3.26) \\ 0.02^{*} \\ (3.63) \\ 0.02^{*} \\ (3.21) \end{array}$	$\begin{array}{c} (3.17) \\ 0.02^{*} \\ (3.63) \\ 0.02^{*} \\ (3.29) \\ 0.02^{*} \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.02 \\ 0.02 \\ (3.05) \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.0 \\ 0.01 \\ 0.0 \\ 0$	2† 0.02† 28) (2.28) 2† 0.02† 03) (2.07) 2† 0.02† 2† 0.02†	$\begin{array}{c} 0.02^{*} \\ (3.63) \\ 0.02^{*} \\ (3.21) \end{array}$	$\begin{array}{c} 0.02^{*} \\ (3.63) \\ 0.02^{*} \\ (3.29) \\ 0.02^{*} \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} (3.05) \\ 0.02^{*} \\ 0.02^{*} \\ 0.01^{+} \\ 0.00^{+} \\ 0.00^{$	$\begin{array}{cccc} 28) & (2.28) \\ 27 & 0.027 \\ 33) & (2.07) \\ 27 & 0.027 \\ \end{array}$	$(3.63) \\ 0.02^{*} \\ (3.21)$	$(3.63) \\ 0.02^{*} \\ (3.29) \\ 0.02^{*}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.02^{*} & 0.0 \\ (2.67) & (2.1) \\ 0.01^{\dagger} & 0.0 \\ (2.46) & (2.1) \\ \end{array}$	2† 0.02† 33) (2.07) 2† 0.02†	0.02^{*} (3.21)	$\begin{array}{c} 0.02^{*} \\ (3.29) \\ 0.02^{*} \end{array}$
$\begin{array}{cccc} 00/10 \ {\rm perc.\ ratio\ times\ highest\ fifth} & 0.04^{*} & 0.04^{*} & 0.01^{*} \\ 0.04^{*} & 0.01^{*} & 0.01^{*} \\ {\rm Household\ income} & (4.15) & (4.05) & (2.61) \\ {\rm Household\ income\ squared} & (1.04) \\ {\rm Household\ income\ squared} & (1.73) \\ \hline {\rm Predicted\ change\ in\ ill-health\ (conditional\)\ rank} \end{array}$	$\begin{array}{c} (2.67) & (2.0) \\ 0.01\dagger & 0.0 \\ (2.46) & (2.0) \\ \end{array}$	$\begin{array}{cccc} 03) & (2.07) \\ 12\dagger & 0.02\dagger \end{array}$	(3.21)	$(3.29) \\ 0.02^{*}$
$\begin{array}{ccccccc} 90/10 \ \mathrm{perc.\ ratio\ times\ highest\ fifth} & 0.04 & 0.04 & 0.01 & \\ & & & & & & & & & & & & & & & & & $	$\begin{array}{c} 0.01 \\ (2.46) \\ 0.0 \\ 0.0 \\ (2.16) \\ 0.0 $	12^{+} 0.02 $^{+}$		0.02^{*}
(4.15) (4.05) (2.61) Household income (4.15) (4.05) (2.61) Household income squared (1.04) (1.73) Predicted change in ill-health (conditional) rank	(2.46) (2.0	-	0.02^{*}	
Household income 0.04 (1.04) Household income squared 0.01 (1.73) Predicted change in ill-health (conditional) rank	0000	(2.19) (2.19)	(3.29)	(3.52)
(1.04) Household income squared -0.01 (1.73) Predicted change in ill-health (conditional) rank	0.03	-0.05		-0.07
Household income squared -0.01 (1.73) Predicted change in ill-health (conditional) rank	(0.78)	(1.38)		(1.68)
(1.73) Predicted change in ill-health (conditional) rank	-0.01	0.01^{*}		0.01^{*}
Predicted change in ill-health (conditional) rank	(1.56)	(2.84)		(3.04)
Mean income effect 0.024^{*} 0.023^{*} 0.022^{*}	0.022* -0.(01 -0.001	0.003	0.004
Inequality effect (lower quintile) 0.029^* 0.030^* 0.010^*	0.010^{*} 0.0	$13^{+}_{-} 0.013^{+}_{-}$	0.009^{*}	0.008^{*}
Inequality effect (upper quintile) 0.024^* 0.024^* 0.007^*	0.0 70000	12^{+}_{-} 0.013 ⁺ _{-}	0.008^{*}	0.009^{*}
Household income effect 0.002	0.001	-0.002		-0.003
: Coefficient on mean regional income and household income multiplied by	100,000. Coeffic	cient on square	d househole	d income n
e^{10} . † and * indicate significance at 5% and 1% levels respectively. Absolut	e z-values in pa	rentheses. See	text for an	explanatio
unotion of shoren is seedingtod [1] hoolth mode				

and	
measure	(bottom)
nequality	ted rank
egional ir	in predict
ndex as r	l change
e Theil ii	id implied
with th	(top) ar
alth score	estimates
ative ill-he	coefficient
of the rel	le groups;
ear models	ome quinti
effects line	s with inc
4: Fixed	tion effect
Table A1	interac

Explanatory variable								
	LUN	$\Gamma S 0$	NU	$\Gamma S 1$	NU	$\Gamma S 0$	NU	TS 1
Coefficient estimates on								
Mean income in region	1.97^{*}	1.93^{*}	1.14^{*}	1.11^{*}	0.43	0.47	0.23	0.27
	(7.02)	(6.80)	(4.74)	(4.57)	(1.57)	(1.71)	(0.98)	(1.17)
Theil index times lowest fifth	1.62^{*}	1.64^{*}	0.75^{*}	0.77^{*}	1.11^{*}	1.09*	0.60^{*}	0.57*
	(7.97)	(8.03)	(5.23)	(5.30)	(5.59)	(5.46)	(4.30)	(4.06)
Theil index times second fifth	1.46^{*}	1.47^{*}	0.59^{*}	0.60^{*}	1.05^{*}	1.04^{*}	0.54^{*}	0.52^{*}
	(7.20)	(7.24)	(4.12)	(4.17)	(5.30)	(5.24)	(3.88)	(3.77)
Theil index times third fifth	1.43^{*}	1.43^{*}	0.57^{*}	0.57^{*}	1.11^{*}	1.11^{*}	0.60^{*}	0.60^{*}
	(7.07)	(7.08)	(3.98)	(4.00)	(5.61)	(5.61)	(4.34)	(4.31)
Theil index times fourth fifth	1.36^{*}	1.35^{*}	0.51^{*}	0.50^{*}	1.03^{*}	1.04^{*}	0.53^{*}	0.54^{*}
	(6.74)	(6.70)	(3.56)	(3.52)	(5.19)	(5.24)	(3.79)	(3.87)
Theil index times highest fifth	1.35^{*}	1.32^{*}	0.49^{*}	0.47^{*}	1.04^{*}	1.07^{*}	0.54^{*}	0.58^{*}
	(6.61)	(6.43)	(3.40)	(3.20)	(5.20)	(5.30)	(3.81)	(4.02)
Household income		0.04		0.03		-0.05		-0.06
		(1.09)		(0.91)		(1.23)		(1.54)
Household income squared		-0.01		-0.01		0.01^{*}		0.01^{*}
		(1.78)		(1.65)		(2.74)		(2.94)
Predicted change in ill-health (con-	ditional)	rank						
Mean income effect	0.034^{*}	0.033^{*}	0.025^{*}	0.024^{*}	0.007	0.008	0.005	0.006
Inequality effect (lower quintile)	0.043^{*}	0.043^{*}	0.015^{*}	0.016^{*}	0.029^{*}	0.029^{*}	0.012^{*}	0.012^{*}
nequality effect (upper quintile)	0.035^{*}	0.035^{*}	0.010^{*}	0.010^{*}	0.027^{*}	0.028^{*}	0.011^{*}	0.012^{*}
Household income effect		0.002		0.001		-0.002		-0.002

with the Mean Log-deviation index as regional inequality	t estimates (top) and implied change in predicted rank	
nealth so	ps; coef	(botton
ive ill-h	le groul	
ne relati	quintil	
els of th	income	
ear mod	ts with	
ects line	on effec	
'ixed eff	nteractic	
A15: F	and ii	
Table $_{I}$	measure	

(:
-
-
+
-
\sim
\sim

		WI(en			IOM	men	
Explanatory variable	LUN	S 0	lUN	$\Gamma S 1$	NU	$\Gamma S 0$	LUN	$\Gamma S 1$
cient estimates on								
Mean income in region	1.88^{*}	1.84^{*}	1.15^{*}	1.12^{*}	0.29	0.33	0.21	0.26
	(6.76)	(6.53)	(4.75)	(4.60)	(1.08)	(1.21)	(0.91)	(1.09)
MLD times lowest fifth	1.27^{*}	1.28^{*}	0.61^{*}	0.62^{*}	0.76^{*}	0.75^{*}	0.44^{*}	0.42^{*}
	(7.67)	(7.74)	(5.37)	(5.43)	(4.72)	(4.60)	(4.04)	(3.80)
MLD times second fifth	1.11^{*}	1.12^{*}	0.45^{*}	0.46^{*}	0.70^{*}	0.70^{*}	0.39^{*}	0.37^{*}
	(6.78)	(6.83)	(4.06)	(4.11)	(4.39)	(4.33)	(3.54)	(3.43)
MLD times third fifth	1.08^{*}	1.08^{*}	0.43^{*}	0.44^{*}	0.76^{*}	0.76^{*}	0.44^{*}	0.44^{*}
	(6.62)	(6.63)	(3.90)	(3.92)	(4.74)	(4.73)	(4.04)	(4.03)
MLD times fourth fifth	1.02^{*}	1.01^{*}	0.38^{*}	0.38^{*}	0.68^{*}	0.69^{*}	0.37^{*}	0.38^{*}
	(6.23)	(6.18)	(3.41)	(3.36)	(4.23)	(4.28)	(3.39)	(3.48)
MLD times highest fifth	1.00^{*}	0.98^{*}	0.37^{*}	0.35^{*}	0.69^{*}	0.71^{*}	0.38^{*}	0.42^{*}
	(6.08)	(5.87)	(3.24)	(3.02)	(4.22)	(4.33)	(3.41)	(3.64)
Household income		0.04		0.03		-0.04		-0.06
		(1.13)		(0.79)		(1.11)		(1.49)
Household income squared		-0.01		-0.01		0.01^{*}		0.01^{*}
		(1.80)		(1.58)		(2.66)		(2.91)
ted change in ill-health (con	ditional)	rank						
Mean income effect	0.032^{*}	0.031^{*}	0.025^{*}	0.024^{*}	0.005	0.006	0.005	0.006
ality effect (lower quintile)	0.038^{*}	0.038^{*}	0.014^{*}	0.015^{*}	0.023^{*}	0.022^{*}	0.010^{*}	0.010^{*}
ality effect (upper quintile)	0.030^{*}	0.029^{*}	0.009^{*}	0.008^{*}	0.020^{*}	0.021^{*}	0.009^{*}	0.010^{*}
Household income effect		0.002		0.001		-0.002		-0.002

iplied by $10e^{10}$. \dagger and * indicate significance at 5% and 1% levels respectively. Absolute z-values in parentheses. See text for an explanation on the construction of change in predicted ill-health rank. Notes:

zient of variation as regional inequality	and implied change in predicted rank	
Table A16: Fixed effects linear models of the relative ill-health score with the Coef	measure and interaction effects with income quintile groups; coefficient estimates (to)	(bottom).

		-	-
		0	
		~	-
			-
		+	_
			-
		+	_
		-	-
		0	
		~	-
<u> </u>		1	_
		_	
			_
	~		
		_	-
۰.			

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			M	en			Woi	nen	
$ \begin{array}{c cccc} \mbox{Trimetes on} & Trimetes on$	Explanatory variable	LUN	$\Gamma S 0$	LUN	$\Gamma S \ 1$	NU	$\Gamma S 0$	NU	$\Gamma S \ 1$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Coefficient estimates on								
$ \begin{array}{ccccc} \label{eq:constraint} & (6.83) & (6.61) & (4.57) & (4.38) & (1.51) & (1.69) & (0.89) & (1.11) \\ & (7.42) & (7.42) & (7.42) & (7.28) & 0.24^* & 0.26^* & 0.25^* \\ & (7.42) & (7.42) & (7.42) & (7.41) & (4.54) & (5.64) & (5.56) & (4.33) & (4.18) \\ & (6.99) & (7.01) & (3.83) & (3.38) & (5.44) & (0.47^* & 0.24^* & 0.24^* \\ & (6.33) & (6.94) & (3.77) & (3.23^* & 0.21^* & 0.47^* & 0.24^* & 0.23^* \\ & (6.93) & (6.94) & (3.77) & (3.23^* & 0.21^* & 0.47^* & 0.24^* & 0.24^* \\ & (6.93) & (6.94) & (3.76) & (3.21^* & 0.21^* & 0.48^* & 0.24^* & 0.24^* \\ & (6.93) & (6.94) & (3.76) & (6.21^* & 0.21^* & 0.21^* & 0.49^* & 0.24^* & 0.24^* \\ & (6.93) & (6.94) & (6.73) & (3.11) & (3.29) & (5.41) & (4.16) & (4.10) \\ & (6.76) & (6.50) & (6.60) & (3.41) & (3.29) & (5.44) & (5.41) & (4.16) \\ & (1.65) & (1.65) & (1.65) & (1.64) & (1.06) & (1.06) \\ & (1.03) & (1.06) & (1.06) & (1.06) & (1.06) & (1.06) & (1.16) \\ & (1.03) & (1.06) & (1.06) & (1.06) & (1.06) & (1.06) & (1.06) \\ & (1.03) & (1.06) & (1.03) & (1.06) & (1.06) & (1.06) & (1.06) & (1.06) \\ & (1.03) & (1.06) & (1.03) & (1.06) & (1.06) & (1.175) & (2.88) & (0.014^* & 0.011^* & (0.011^* & 0.011^* \\ & & & & & & & & & & & & & & & & & & $	Mean income in region	1.90^{*}	1.86^{*}	1.09^{*}	1.06^{*}	0.41	0.46	0.21	0.26
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(6.83)	(6.61)	(4.57)	(4.38)	(1.51)	(1.69)	(0.89)	(1.11)
$ \begin{array}{c cccc} \mbox{Tr} Coefficient of variation times second fifth $$ 0.52* $$ 0.23* $$ 0.24* $$ 0.47* $$ 0.24* $$ 0.23* $$ 0.24* $$ 0.47* $$ 0.24* $$ 0.23* $$ 0.24* $$ 0.23* $$ 0.24* $$ 0.24* $$ 0.23* $$ 0.25* $$ 0.25* $$ 0.25* $$ 0.25* $$ 0.25* $$ 0.23* $$ 0.23* $$ 0.24* $$ 0.47* $$ 0.24* $$ 0.25* $$ 0.25* $$ 0.25* $$ 0.50* $$ 0.53* $$ 0.23* $$ 0.49* $$ 0.49* $$ 0.26* $$ 0.25* $$ 0.25* $$ 0.25* $$ 0.21* $$ 0.21* $$ 0.21* $$ 0.24* $$ 0.24* $$ 0.24* $$ 0.24* $$ 0.24* $$ 0.24* $$ 0.24* $$ 0.24* $$ 0.24* $$ 0.24* $$ 0.25* $$ 0.25* $$ 0.21* $$ 0.21* $$ 0.21* $$ 0.21* $$ 0.21* $$ 0.21* $$ 0.24* $$ 0.24* $$ 0.24* $$ 0.24* $$ 0.24* $$ 0.24* $$ 0.24* $$ 0.24* $$ 0.24* $$ 0.25* $$ 0.25* $$ 0.25* $$ 0.25* $$ 0.25* $$ 0.22* $$ 0.24* $$ 0.24* $$ 0.25* $$ 0.24* $$ 0.24* $$ 0.25* $$ 0.24* $$ 0.24* $$ 0.25* $$ 0.24* $$ 0.25* $$ 0.24* $$ 0.25* $$ 0.24* $$ 0.24* $$ 0.25* $$ 0.24* $$ 0.25* $$ 0.24* $$ 0.25* $$ 0.24* $$ 0.24* $$ 0.25* $$ 0.24* $$ 0.25* $$ 0.24* $$ 0.25* $$ 0.24* $$ 0.25* $$ 0.24* $$ 0.25* $$ 0.24* $$ 0.25* $$ 0.25* $$ 0.24* $$ 0.25* $$ 0.24* $$ 0.25* $$ 0.25* $$ 0.24* $$ 0.25* $$ 0.25* $$ 0.24* $$ 0.25* $$ 0.25* $$ 0.24* $$ 0.25* $$ 0.25* $$ 0.24* $$ 0.25* $$ 0.25* $$ 0.25* $$ 0.24* $$ 0.25* $$ 0.27* $$ 0.24* $$ 0.25* $$ 0.27* $$ 0.07$ $$ 0.06* $$ 0.24* $$ 0.25* $$ 0.07$ $$ 0.07$ $$ 0.01* $$ 0.01* $$ 0.01* $$ 0.01* $$ 0.01* $$ 0.01* $$ 0.01* $$ 0.02* $$ 0.02* $$ 0.02* $$ 0.02* $$ 0.02* $$ 0.01* $$ 0.01* $$ 0.01* $$ 0.00* $$ 0.00* $$ 0.00* $$ 0.00* $$ 0.001* $$ 0.011* $$ 0.01* $$ 0.001* $$ 0.002* $$ 0.028* $$ 0.028* $$ 0.028* $$ 0.011* $$ 0.011* $$ 0.011* $$ 0.002* $$ 0.028* $$ 0.028* $$ 0.001* $$ 0.011* $$ 0.011* $$ 0.011* $$ 0.011* $$ 0.001* $$ 0.002* $$ 0.002* $$ 0.001* $$ 0.001* $$ 0.001* $$ 0.001* $$ 0.001* $$ 0.001* $$ 0.001* $$ 0.001* $$ 0.002* $$ 0.001* $$ 0.001* $$ 0.001* $$ 0.001* $$ 0.001* $$ 0.001* $$ 0.001* $$ 0.001* $$ 0.002* $$ 0.001* $$ 0.001* $$ 0.001* $$ 0.001* $$ 0.001* $$ 0.002* $$ 0.001* $$ 0.001* $$ 0.001* $$ 0.001* $$ 0.001* $$ 0.002* $$ 0.001* $$ 0.001* $$ 0.001* $$ 0.001* $$ 0.001* $$ 0.0$	Coefficient of variation times lowest fifth	0.66*	0.67^{*}	0.27^{*}	0.28^{*}	0.49^{*}	0.48^{*}	0.26^{*}	0.25^{*}
$ \begin{array}{c cccc} \mbox{Coefficient of variation times second fifth} & 0.62* & 0.62* & 0.23* & 0.24* & 0.47* & 0.24* & 0.23* & 0.23* \\ \mbox{Coefficient of variation times third fifth} & 0.62* & 0.62* & 0.23* & 0.23* & 0.49* & 0.49* & 0.26* & 0.25* \\ \mbox{Coefficient of variation times fourth fifth} & 0.60* & 0.61* & 0.21* & 0.21* & 0.49* & 0.24* & 0.24* \\ \mbox{Coefficient of variation times highest fifth} & 0.60* & 0.21* & 0.21* & 0.47* & 0.24* & 0.24* & 0.24* \\ \mbox{Coefficient of variation times highest fifth} & 0.60* & 0.21* & 0.21* & 0.47* & 0.48* & 0.24* & 0.24* \\ \mbox{Coefficient of variation times highest fifth} & 0.60* & 0.21* & 0.21* & 0.47* & 0.48* & 0.24* & 0.24* \\ \mbox{Coefficient of variation times highest fifth} & 0.60* & 0.59* & 0.21* & 0.21* & 0.47* & 0.48* & 0.24* & 0.24* \\ \mbox{Coefficient of variation times highest fifth} & 0.60* & 0.50* & 0.21* & 0.21* & 0.47* & 0.24* & 0.24* \\ \mbox{Coefficient of variation times highest fifth} & 0.60* & 0.59* & 0.21* & 0.20* & 0.48* & 0.24* & 0.24* & 0.25* \\ \mbox{Coefficient of variation times highest fifth} & 0.60* & 0.21* & 0.24* & 0.24* & 0.24* & 0.25* \\ \mbox{Household income squared} & 0.04 & 0.04 & 0.04 & 0.06* & 0.01* \\ \mbox{Household income squared} & 0.03* & 0.03* & 0.02* & 0.02* & 0.01* & 0.01* \\ \mbox{Heat lifty effect (lower quintile)} & 0.03* & 0.03* & 0.02* & 0.02* & 0.01* & 0.01* & 0.01* \\ \mbox{Household income effect } & 0.032* & 0.03* & 0.00* & 0.002* & 0.011* & 0.01* & 0.01* \\ \mbox{Household income effect } & 0.032* & 0.00* & 0.00* & 0.00* & 0.00* & 0.001* & 0.01* \\ \mbox{Household income effect } & 0.032* & 0.03* & 0.00* & 0.02* & 0.01* & 0.01* & 0.01* \\ \mbox{Household income effect } & 0.032* & 0.00* & 0.00* & 0.00* & 0.00* & 0.011* & 0.01* \\ \mbox{Household income effect } & 0.002* & 0.002* & 0.002* & 0.01* & 0.001* & 0.01* \\ \mbox{Household income effect } & 0.002* & 0.002* & 0.002* & 0.011* & 0.01* \\ \mbox{Household income effect } & 0.002* & 0.002* & 0.002* & 0.001* & 0.001* \\ \mbox{Household income effect } & 0.002* & 0.002*$		(7.42)	(7.46)	(4.47)	(4.54)	(5.64)	(5.56)	(4.33)	(4.18)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Coefficient of variation times second fifth	0.62^{*}	0.62^{*}	0.23^{*}	0.24^{*}	0.48^{*}	0.47^{*}	0.24^{*}	0.23^{*}
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(66.90)	(7.01)	(3.83)	(3.88)	(5.46)	(5.42)	(4.07)	(3.99)
$ \begin{array}{c cccc} \mbox{Coefficient of variation times fourth fifth} & 0.60 & 0.60 & 0.21 & 0.21 & 0.47 & 0.48 & 0.24 & 0.24 & 0.24 & 0.24 & 0.24 & 0.24 & 0.24 & 0.24 & 0.24 & 0.25 & 0.06 & 0.60 & 0.59 & 0.21 & 0.20 & 0.49 & 0.49 & 0.24 & 0.25 & 0.25 & 0.04 & 0.06 & 0.20 & 0.04 & 0.06 & 0.24 & 0.25 & 0.07 & 0.06 & 0.01 & 0.06 & 0.06 & 0.01 & 0.00 & 0.00$	Coefficient of variation times third fifth	0.62^{*}	0.62^{*}	0.23^{*}	0.23^{*}	0.49^{*}	0.49^{*}	0.26^{*}	0.25^{*}
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(6.93)	(6.94)	(3.76)	(3.77)	(5.65)	(5.64)	(4.35)	(4.33)
$ \begin{array}{ccccc} \mbox{Coefficient of variation times highest fifth} & 0.60^{*} & 0.59^{*} & 0.21^{*} & 0.20^{*} & 0.48^{*} & 0.49^{*} & 0.24^{*} & 0.25^{*} \\ \mbox{(6.69)} & (6.60) & (3.41) & (3.29) & (5.44) & (5.47) & (4.06) & (4.10) \\ \mbox{(4.25)} & \mbox{(4.10)} & \mbox{(6.69)} & (0.04 & & 0.04 & & 0.06 & & 0.07 \\ \mbox{Household income squared} & 0.04 & & 0.04 & & 0.06 & & 0.07 \\ \mbox{Household income squared} & 1.03) & (1.06) & (1.16) & (1.45) & (1.65) & (1.65) \\ \mbox{(1.16)} & (1.03) & (1.06) & (1.06) & (1.45) & (1.65) & (1.65) \\ \mbox{(1.16)} & \mbox{(1.175)} & \mbox{(2.88)} & 0.01^{*} & 0.01^{*} \\ \mbox{Mean income effect} & 0.032^{*} & 0.024^{*} & 0.023^{*} & 0.007 & 0.008 & 0.004 & 0.006 \\ \mbox{Inequality effect (lower quintile)} & 0.033^{*} & 0.012^{*} & 0.012^{*} & 0.028^{*} & 0.028^{*} & 0.011^{*} & 0.011^{*} \\ \mbox{Inequality effect (upper quintile)} & 0.035^{*} & 0.034^{*} & 0.002^{*} & 0.028^{*} & 0.028^{*} & 0.011^{*} & 0.011^{*} \\ \mbox{Household income effect} & 0.032^{*} & 0.034^{*} & 0.002^{*} & 0.028^{*} & 0.028^{*} & 0.011^{*} & 0.011^{*} \\ \mbox{Household income effect} & 0.034^{*} & 0.002^{*} & 0.002^{*} & 0.028^{*} & 0.028^{*} & 0.011^{*} & 0.011^{*} \\ \mbox{Household income effect} & 0.032^{*} & 0.002^{*} & 0.002^{*} & 0.028^{*} & 0.028^{*} & 0.011^{*} & 0.011^{*} \\ \mbox{Household income effect} & 0.002^{*} & 0.002^{*} & 0.002^{*} & 0.002^{*} & 0.002^{*} & 0.002^{*} & 0.002^{*} & 0.002^{*} & 0.002^{*} \\ \mbox{Household income effect} & 0.002^{*} & 0.002^{*} & 0.002^{*} & 0.002^{*} & 0.002^{*} & 0.002^{*} & 0.002^{*} & 0.001^{*} & 0.001^{*} \\ \mbox{Household income effect} & 0.002^{*$	Coefficient of variation times fourth fifth	0.60^{*}	0.60^{*}	0.21^{*}	0.21^{*}	0.47^{*}	0.48^{*}	0.24^{*}	0.24^{*}
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(6.76)	(6.73)	(3.51)	(3.49)	(5.44)	(5.47)	(4.06)	(4.10)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Coefficient of variation times highest fifth	0.60^{*}	0.59^{*}	0.21^{*}	0.20^{*}	0.48^{*}	0.49^{*}	0.24^{*}	0.25^{*}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(6.69)	(09.9)	(3.41)	(3.29)	(5.46)	(5.55)	(4.10)	(4.25)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Household income		0.04		0.04		-0.06		-0.07
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			(1.03)		(1.06)		(1.45)		(1.65)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Household income squared		-0.01		-0.01		0.01^{*}		0.01^{*}
$ \begin{array}{l lllllllllllllllllllllllllllllllllll$			(1.73)		(1.75)		(2.88)		(3.00)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Predicted change in ill-health (conditional)	rank							
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Mean income effect	0.032^{*}	0.032^{*}	0.024^{*}	0.023^{*}	0.007	0.008	0.004	0.006
Inequality effect (upper quintile) 0.035^* 0.034^* 0.009^* 0.009^* 0.028^* 0.028^* 0.011^* 0.011^* Household income effect 0.002 0.002 -0.002 -0.002	Inequality effect (lower quintile)	0.038^{*}	0.039^{*}	0.012^{*}	0.012^{*}	0.028^{*}	0.028^{*}	0.011^{*}	0.011^{*}
Household income effect 0.002 0.002 -0.002 -0.003	Inequality effect (upper quintile)	0.035^{*}	0.034^{*}	0.009^{*}	0.009^{*}	0.028^{*}	0.028^{*}	0.011^{*}	0.011^{*}
	Household income effect		0.002		0.002		-0.002		-0.003
	* 10e ^{-*} .] and * indicate significance at 5% and 1% instruction of change in predicted ill-health rank.) levels res	pectively.	Absolute z-	-values in]	oarentnese	s. Dee text	ior an exj	planation oi
* 10e**. 7 and ** indicate significance at 5% and 1% levels respectively. Absolute z-values in parentneses. See text for an explanation on t nstruction of change in predicted ill-health rank.									

elative ill-health score with the 50th to 10th percentile ratio as regional inequality	intile groups; coefficient estimates (top) and implied change in predicted rank	(bottom).
Table A17: Fixed effects linear models of the relative ill-health score with the 50th to 10th percen	measure and interaction effects with income quintile groups; coefficient estimates (top) and im	(bottom).

H
\circ
- H
15
Ξ
Ŷ

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Μ	en			W_{O}	men	
$ \begin{array}{c} \mbox{Coefficient estimates on} & \mbox{Coefficient estimates on} & \mbox{Loss} & 1.01* & 0.91* & 0.88* & -0.27 & -0.01 & 0.05 & 0.03 & 0.021 \\ \mbox{Mean income in region } & 1.05* & 1.01* & 0.05* & 0.03* & 0.03* & 0.03 & 0.031 & 0.031 \\ \mbox{50/10 perc. ratio times lowest fifth } & 0.04 & 0.03 & 0.03* & 0.04* & 0.04 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.03 & 0.031 & 0$	Explanatory variable	LUN	$\Gamma S 0$	NU	$\Gamma S \ 1$	NU	$\Gamma S 0$	NU	$\Gamma S 1$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Coefficient estimates on								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mean income in region	1.05^{*}	1.01^{*}	0.91^{*}	0.88^{*}	-0.27	-0.21	-0.01	0.05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(4.20)	(4.00)	(3.93)	(3.76)	(1.10)	(0.86)	(0.03)	(0.21)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50/10 perc. ratio times lowest fifth	0.04	0.04	0.05^{*}	0.05^{*}	-0.03	-0.04	0.03^{+}	0.03^{+}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(1.50)	(1.54)	(3.49)	(3.55)	(1.34)	(1.40)	(2.21)	(2.07)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50/10 perc. ratio times second fifth	0.03	0.03	0.04^{*}	0.04^{*}	-0.04	-0.04	0.02	0.02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(1.13)	(1.15)	(2.77)	(2.80)	(1.51)	(1.53)	(1.87)	(1.81)
	50/10 perc. ratio times third fifth	0.03	0.03	0.04^{*}	0.04^{*}	-0.03	-0.03	0.03^{+}	0.03^{+}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(1.08)	(1.08)	(2.68)	(2.68)	(1.34)	(1.34)	(2.19)	(2.20)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50/10 perc. ratio times fourth fifth	0.02	0.02	0.03^{+}	0.03^{+}	-0.04	-0.04	0.02	0.02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.94)	(0.92)	(2.43)	(2.39)	(1.51)	(1.47)	(1.85)	(1.94)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50/10 perc. ratio times highest fifth	0.02	0.02	0.03^{+}	0.03+	-0.04	-0.03	0.03	0.03^{+}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.00)	(0.84)	(2.34)	(2.21)	(1.46)	(1.35)	(1.95)	(2.18)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Household income		0.04		0.03		-0.06		-0.07
Household income squared -0.01 -0.01 $0.01*$ $0.01*$ $0.01*$ Predicted change in ill-health (conditional) rank (1.70) (1.59) (2.92) (3.05) Predicted change in ill-health (conditional) rank (1.70) (1.59) (2.92) (3.05) Mean income effect $0.018*$ $0.017*$ $0.020*$ 0.004 -0.006 0.004^+ 0.001^+ Inequality effect (lower quintile) 0.007 $0.007*$ $0.007*$ 0.006^+ 0.004^+ 0.004^+ 0.004^+ Inequality effect (upper quintile) 0.004 $0.007*$ $0.007*$ $0.007*$ 0.006^+ 0.006^+ 0.004^+ <			(0.99)		(0.83)		(1.50)		(1.71)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Household income squared		-0.01		-0.01		0.01^{*}		0.01^{*}
Predicted change in ill-health (conditional) rankMean income effect 0.018^* 0.017^* 0.020^* 0.005 -0.006 -0.000 0.001 Inequality effect (lower quintile) 0.007 0.007^* 0.007^* -0.006 -0.006 0.004^{\dagger} 0.004^{\dagger} Inequality effect (upper quintile) 0.004 0.004 0.004^{\dagger} 0.004^{\dagger} 0.004^{\dagger} Household income effect 0.004 0.002 0.001 -0.006 -0.006 0.004^{\dagger} 0.004^{\dagger} : Coefficient on mean regional income effect 0.002 0.001 -0.006 -0.006 -0.003 : Coefficient on mean regional income and household income multiplied by 100,000. Coefficient on squared household income multiplied by 100,000.			(1.70)		(1.59)		(2.92)		(3.05)
Mean income effect 0.018^* 0.017^* 0.020^* 0.005 -0.006 -0.000 0.001 Inequality effect (lower quintile) 0.007 0.007 0.007^* 0.006^* -0.006^* 0.004^+ $0.004^$	Predicted change in ill-health (condit	ional) rai	Jk						
$\label{eq:linear} \begin{array}{c c c c c c c c c c c c c c c c c c c $	Mean income effect	0.018^{*}	0.017^{*}	0.020^{*}	0.019^{*}	-0.005	-0.004	-0.000	0.001
$\frac{\text{Inequality effect (upper quintile)}}{\text{Household income effect}} 0.004 0.004 0.004 0.004 \uparrow -0.006 0.004 0.004 0.004 0.004 0.004 \\ \frac{10.001}{10.001} -0.002 0.001 -0.002 -0.003 \\ \frac{10.001}{10.000} -0.002 0.000 \\ \frac{10.001}{10.000} -0.002 \\ \frac{10.001}{10.000} -0.000 \\ \frac{10.001}{10.000} -0.0000 \\ \frac{10.001}{1$	Inequality effect (lower quintile)	0.007	0.007	0.007^{*}	0.007^{*}	-0.006	-0.006	0.004_{1}^{+}	0.004
$\frac{\text{Household income effect}}{S: Coefficient on mean regional income and household income multiplied by 100,000. Coefficient on squared household income multiplied by 100,000. Coefficient on squared household income multiplied by 100,000. Coefficient on squared household income multiplied of a and * indicate significance at 5% and 1% levels respectively. Absolute z-values in parentheses. See text for an explanation on multiplied definition of channes in traditional threads the start of the $	Inequality effect (upper quintile)	0.004	0.004	0.005	0.004_{1}^{+}	-0.006	-0.006	0.004	0.004^{+}
S: Coefficient on mean regional income and household income multiplied by 100,000. Coefficient on squared household income multiple ¹⁰ . † and * indicate significance at 5% and 1% levels respectively. Absolute z-values in parentheses. See text for an explanation on motion of channes in traditional theorem.	Household income effect		0.002		0.001		-0.002		-0.003
le ¹⁰ . † and * indicate significance at 5% and 1% levels respectively. Absolute z-values in parentheses. See text for an explanation on motion of channes in modicated ill health usuk	: Coefficient on mean regional income and h	ousehold ir	ncome mul	tiplied by	100,000. C	oefficient	on squared	d househol	d income m
mution of deama in modioted ill-health rank	$\mathrm{e}^{10}.$ † and * indicate significance at 5% and	1% levels 1	respectivel	y. Absolute	e z-values	in parenth	teses. See	text for ar	ı explanatio
	unction of change in medicted ill-health rank								

Number	Title	Author(s)
No. 1:	Population Aging and Its Economic Costs: A Survey of the Issues and Evidence	F.T. Denton B.G. Spencer
No. 2:	How Much Help Is Exchanged in Families? Towards an Understanding of Discrepant Research Findings	C.J. Rosenthal L.O. Stone
No. 3:	Did Tax Flattening Affect RRSP Contributions?	M.R. Veall
No. 4:	Families as Care-Providers Versus Care-Managers? Gender and Type of Care in a Sample of Employed Canadians	C.J. Rosenthal A. Martin-Matthews
No. 5:	Alternatives for Raising Living Standards	W. Scarth
No. 6:	Transitions to Retirement: Determinants of Age of Social Security Take Up	E. Tompa
No. 7:	Health and Individual and Community Characteristics: A Research Protocol	F. Béland S. Birch G. Stoddart
No. 8:	Disability Related Sources of Income and Expenses: An Examination Among the Elderly in Canada	 P. Raina S. Dukeshire M. Denton L.W. Chambers A. Scanlan A. Gafni S. French A. Joshi C. Rosenthal
No. 9:	The Impact of Rising 401(k) Pension Coverage on Future Pension Income	W.E. Even D.A. Macpherson
No. 10:	Income Inequality as a Canadian Cohort Ages: An Analysis of the Later Life Course	S.G. Prus
No. 11:	Are Theories of Aging Important? Models and Explanations in Gerontology at the Turn of the Century	V.L. Bengtson C.J. Rice M.L. Johnson
No. 12:	Generational Equity and the Reformulation of Retirement	M.L. Johnson
No. 13:	Long-term Care in Turmoil	M.L. Johnson L. Cullen D. Patsios
No. 14:	The Effects of Population Ageing on the Canadian Health Care System	M.W. Rosenberg

Number	Title	Author(s)
No. 15:	Projections of the Population and Labour Force to 2046: Canada	F.T. Denton C.H. Feaver B.G. Spencer
No. 16:	Projections of the Population and Labour Force to 2046: The Provinces and Territories	F.T. Denton C.H. Feaver B.G. Spencer
No. 17:	Location of Adult Children as an Attraction for Black and White Elderly Migrants in the United States	KL. Liaw W.H. Frey JP. Lin
No. 18:	The Nature of Support from Adult <i>Sansei</i> (Third Generation) Children to Older <i>Nisei</i> (Second Generation) Parents in Japanese Canadian Families	K.M. Kobayashi
No. 19:	The Effects of Drug Subsidies on Out-of-Pocket Prescription Drug Expenditures by Seniors: Regional Evidence from Canada	T.F. Crossley P. Grootendorst S. Korkmaz M.R. Veall
No. 20:	Describing Disability among High and Low Income Status Older Adults in Canada	P. Raina M. Wong L.W. Chambers M. Denton A. Gafni
No. 21:	Parental Illness and the Labour Supply of Adult Children	P.T.Léger
No. 22:	Some Demographic Consequences of Revising the Definition of #Old&o Reflect Future Changes in Life Table Probabilities	F.T. Denton B.G. Spencer
No. 23:	Geographic Dimensions of Aging: The Canadian Experience 1991-1996	E.G. Moore D. McGuinness M.A. Pacey M.W. Rosenberg
No. 24:	The Correlation Between Husband's and Wife's Education: Canada, 1971-1996	L. Magee J. Burbidge L. Robb
No. 25:	The Effect of Marginal Tax Rates on Taxable Income: A Panel Study of the 1988 Tax Flattening in Canada	MA. Sillamaa M.R. Veall
No. 26:	The Stability of Self Assessed Health Status	T.F. Crossley S. Kennedy

Number	Title	Author(s)
No. 27:	How Do Contribution Limits Affect Contributions to Tax- Preferred Savings Accounts?	K. Milligan
No. 28:	The Life Cycle Model of Consumption and Saving	M. Browning T.F. Crossley
No. 29:	Population Change and the Requirements for Physicians: The Case of Ontario	F.T. Denton A. Gafni B.G. Spencer
No. 30:	Nonparametric Identification of Latent Competing Risks and Roy Duration Models	G. Colby P. Rilstone
No. 31:	Simplified Estimation of Multivariate Duration Models with Unobserved Heterogeneity	G. Colby P. Rilstone
No. 32:	Structural Estimation of Psychiatric Hospital Stays	G. Colby P. Rilstone
No. 33:	Have 401(k)s Raised Household Saving? Evidence from the Health and Retirement Study	G.V. Engelhardt
No. 34:	Health and Residential Mobility in Later Life: A New Analytical Technique to Address an Old Problem	L.M. Hayward
No. 35:	2 ¹ / ₂ Proposals to Save Social Security	D. Fretz M.R. Veall
No. 36:	The Consequences of Caregiving: Does Employment Make a Difference	C.L. Kemp C.J. Rosenthal
No. 37:	Fraud in Ethnocultural Seniors' Communities	P.J.D. Donahue
No. 38:	Social-psychological and Structural Factors Influencing the Experience of Chronic Disease: A Focus on Individuals with Severe Arthritis	P.J. Ballantyne G.A. Hawker D. Radoeva
No. 39:	The Extended Self: Illness Experiences of Older Married Arthritis Sufferers	P.J. Ballantyne G.A. Hawker D. Radoeva
No. 40:	A Comparison of Alternative Methods to Model Endogeneity in Count Models. An Application to the Demand for Health Care and Health Insurance Choice	M. Schellhorn
No. 41:	Wealth Accumulation of US Households: What Do We Learn from the SIPP Data?	V. Hildebrand
No. 42:	Pension Portability and Labour Mobility in the United States. New Evidence from SIPP Data.	V. Andrietti V. Hildebrand

Number	Title	Author(s)
No. 43:	Exploring the Effects of Population Change on the Costs of Physician Services	F.T. Denton A. Gafni B.G. Spencer
No. 44:	Reflexive Planning for Later Life: A Conceptual Model and Evidence from Canada	M.A. Denton S. French A. Gafni A. Joshi C. Rosenthal S. Webb
No. 45:	Time Series Properties and Stochastic Forecasts: Some Econometrics of Mortality from the Canadian Laboratory	F.T. Denton C.H. Feaver B.G. Spencer
No. 46:	Linear Public Goods Experiments: A Meta-Analysis	J. Zelmer
No. 47:	Local Planning for an Aging Population in Ontario: Two Case Studies	L.M. Hayward
No. 48:	Management Experience and Diversity in an Ageing Organisation: A Microsimulation Analysis	T. Wannell M. Gravel
No. 49:	Resilience Indicators of Post Retirement Well-Being	E. Marziali P. Donahue
No. 50:	Continuity or Change? Older People in Three Urban Areas	J. Phillips M. Bernard C. Phillipson J. Ogg
No. 51:	Intracohort Income Status Maintenance: An Analysis of the Later Life Course	S.G. Prus
No. 52:	Tax-Preferred Savings Accounts and Marginal Tax Rates: Evidence on RRSP Participation	K. Milligan
No. 53:	Cohort Survival Analysis is Not Enough: Why Local Planners Need to Know More About the Residential Mobility of the Elderly	L.M. Hayward N.M. Lazarowich
No. 54:	Unemployment and Health: Contextual Level Influences on the Production of Health in Populations	F. Béland S. Birch G. Stoddart

Number	Title	Author(s)
No. 55:	The Timing and Duration of Women's Life Course Events: A Study of Mothers With At Least Two Children	K.M. Kobayashi A. Martin-Matthews C.J. Rosenthal S. Matthews
No. 56:	Age-Gapped and Age-Condensed Lineages: Patterns of Intergenerational Age Structure Among Canadian Families	A. Martin-Matthews K. M. Kobayashi C.L. Rosenthal S.H. Matthews
No. 57:	The Relationship between Age, Socio-Economic Status, and Health among Adult Canadians	S.G. Prus
No. 58:	Measuring Differences in the Effect of Social Resource Factors on the Health of Elderly Canadian Men and Women	S.G. Prus E. Gee
No. 59:	APOCALYPSE NO: Population Aging and the Future of Health Care Systems	R.G. Evans K.M. McGrail S.G. Morgan M.L. Barer C. Hertzman
No. 60:	The Education Premium in Canada and the United States	J.B. Burbidge L. Magee A.L. Robb
No. 61:	Student Enrolment and Faculty Recruitment in Ontario: The Double Cohort, the Baby Boom Echo, and the Aging of University Faculty	B.G. Spencer
No. 62:	The Social and Demographic Contours of Contemporary Grandparenthood: Mapping Patterns in Canada and the United States	C.L. Kemp
No. 63:	Changing Income Inequality and the Elderly in Canada 1991- 1996: Provincial Metropolitan and Local Dimensions	E.G. Moore M.A. Pacey
No. 64:	Mid-life Patterns and the Residential Mobility of Older Men	L.M. Hayward
No. 65:	The Retirement Incentive Effects of Canada's Income Security Programs	M. Baker J. Gruber K. Milligan
No. 66:	The Economic Well-Being of Older Women Who Become Divorced or Separated in Mid and Later Life	S. Davies M. Denton

Number	Title	Author(s)
No. 67:	Alternative Pasts, Possible Futures: A "What If" Study of the Effects of Fertility on the Canadian Population and Labour Force	F.T. Denton C.H. Feaver B.G. Spencer
No. 68:	Baby-Boom Aging and Average Living Standards	W. Scarth M. Souare
No. 69:	The Invisible Retirement of Women	L. McDonald
No. 70:	The Impact of Reference Pricing of Cardiovascular Drugs on Health Care Costs and Health Outcomes: Evidence from British Columbia – Volume I: Summary	P.V. Grootendorst L.R. Dolovich A.M. Holbrook A.R. Levy B.J. O'Brien
No. 71:	The Impact of Reference Pricing of Cardiovascular Drugs on Health Care Costs and Health Outcomes: Evidence from British Columbia – Volume II: Technical Report	P.V. Grootendorst L.R. Dolovich A.M. Holbrook A.R. Levy B.J. O'Brien
No. 72:	The Impact of Reference Pricing of Cardiovascular Drugs on Health Care Costs and Health Outcomes: Evidence from British Columbia – Volume III: ACE and CCB Literature Review	L.R. Dolovich A.M. Holbrook M. Woodruff
No. 73:	Do Drug Plans Matter? Effects of Drug Plan Eligibility on Drug Use Among the Elderly, Social Assistance Recipients and the General Population	P. Grootendorst M. Levine
No. 74:	Living Alone and Living with Children: The Living Arrangements of Canadian and Chinese-Canadian Seniors	M.A. Pacey
No. 75:	Student Enrolment and Faculty Recruitment in Ontario: The Double Cohort, the Baby Boom Echo, and the Aging of University Faculty (Revised and updated version of No. 61)	B.G. Spencer
No. 76:	Gender Differences in the Influence of Economic, Lifestyle, and Psychosocial Factors on Later-life Health	S.G. Prus E. Gee
No. 77:	Asking Consumption Questions in General Purpose Surveys	M. Browning T.F. Crossley G. Weber
No. 78:	A Longitudinal Study of the Residential Mobility of the Elderly in Canada	Y. Ostrovsky
No. 79:	Health Care in Rural Communities: Exploring the Development of Informal and Voluntary Care	M.W. Skinner M.W. Rosenberg

Number	Title	Author(s)
No. 80:	Does Cognitive Status Modify the Relationship Between Education and Mortality? Evidence from the Canadian Study of Health and Aging	J.C. Brehaut P. Raina J. Lindsay
No. 81:	Agreement Between Self-Reported and Routinely Collected Health Care Utilisation Data Among Seniors	P. Raina V. Torrance-Rynard M. Wong C. Woodward
No. 82:	Age, Retirement and Expenditure Patterns: An Econometric Study of Older Canadian Households	F.T. Denton D.C. Mountain B.G. Spencer
No. 83:	Understanding the Relationship between Income Status and the Restrictions in Instrumental Activities of Daily Living among Disabled Older Adults	P. Raina M. Wong
No. 84:	Location of Adult Children as an Attraction for Black and White Elderly <i>Return</i> and <i>Onward</i> Migrants in the United States: Application of a Three-level Nested Logit Model with Census Data	K-L. Liaw W.H. Frey
No. 85:	Changing Income Inequality and Immigration in Canada 1980-1995	E.G. Moore M.A. Pacey
No. 86:	The Dynamics of Food Deprivation and Overall Health: Evidence from the Canadian National Population Health Survey	L. McLeod M.R. Veall
No. 87:	Quebec's Lackluster Performance in Interprovincial Migration and Immigration: How, Why, and What Can Be Done?	K-L. Liaw L. Xu M. Qi
No. 88:	Out-of-Pocket Prescription Drug Expenditures and Public Prescription Drug Programs	S. Alan T.F. Crossley P. Grootendorst M.R. Veall
No. 89:	The Wealth and Asset Holdings of U.SBorn and Foreign-Born Households: Evidence from SIPP Data	D.A. Cobb-Clark V. Hildebrand
No. 90:	Population Aging, Productivity, and Growth in Living Standards	W. Scarth
No. 91:	A Life-course Perspective on the Relationship between Socio- economic Status and Health: Testing the Divergence Hypothesis	S.G. Prus
No. 92:	Immigrant Mental Health and Unemployment	S. Kennedy
No. 93:	The Relationship between Education and Health in Australia and Canada	S. Kennedy

Number	Title	Author(s)
No. 94:	The Transition from Good to Poor Health: An Econometric Study of the Older Population	N.J. Buckley F.T. Denton A.L. Robb B.G. Spencer
No. 95:	Using Structural Equation Modeling to Understand the Role of Informal and Formal Supports on the Well-being of Caregivers of Persons with Dementia	 P. Raina C. McIntyre B. Zhu I. McDowell L. Santaguida B. Kristjansson A. Hendricks L.W. Chambers
No. 96:	Helping to Build and Rebuild Secure Lives and Futures: Intergenerational Financial Transfers from Parents to Adult Children and Grandchildren	J. Ploeg L. Campbell M. Denton A. Joshi S. Davies
No. 97:	Geographic Dimensions of Aging in Canada 1991-2001	E.G. Moore M.A. Pacey
No. 98:	Examining the "Healthy Immigrant Effect" in Later Life: Findings from the Canadian Community Health Survey	E.M. Gee K.M. Kobayashi S.G. Prus
No. 99:	The Evolution of High Incomes in Canada, 1920-2000	E. Saez M.R. Veall
No. 100:	Macroeconomic Implications of Population Aging and Public Pensions	M. Souare
No. 101:	How Do Parents Affect the Life Chances of Their Children as Adults? An Idiosyncratic Review	J. Ermisch
No. 102:	Population Change and Economic Growth: The Long-Term Outlook	F.T. Denton B.G. Spencer
No. 103:	Use of Medicines by Community Dwelling Elderly in Ontario	P.J. Ballantyne J.A. Marshman P.J. Clarke J.C. Victor
No. 104:	The Economic Legacy of Divorced and Separated Women in Old Age	L. McDonald A.L. Robb

Number	Title	Author(s)
No. 105:	National Catastrophic Drug Insurance Revisited: Who Would Benefit from Senator Kirby's Recommendations?	T.F. Crossley P.V. Grootendorst M.R. Veall
No. 106:	WAGES in CANADA: SCF, SLID, LFS and the Skill Premium	A.L Robb L. Magee J.B. Burbidge
No. 107:	A Synthetic Cohort Analysis of Canadian Housing Careers	T.F. Crossley Y. Ostrovsky
No. 108:	The Policy Challenges of Population Ageing	A. Walker
No. 109:	Social Transfers and Income Inequality in Old-age: A Multi- national Perspective	R.L. Brown S.G. Prus
No. 110:	Organizational Change and the Health and Well-Being of Home Care Workers	M. Denton I.U. Zeytinoglu S. Davies
No. 111:	Stasis Amidst Change: Canadian Pension Reform in an Age of Retrenchment	D. Béland J. Myles
No. 112:	Socioeconomic Aspects of Healthy Aging: Estimates Based on Two Major Surveys	N.J. Buckley F.T. Denton A.L. Robb B.G. Spencer
No. 113:	An Invitation to Multivariate Analysis: An Example About the Effect of Educational Attainment on Migration Propensities in Japan	A. Otomo K-L. Liaw
No. 114:	The Politics of Protest Avoidance: Policy Windows, Labor Mobilization, and Pension Reform in France	D. Béland P. Marier
No. 115:	The Impact of Differential Cost Sharing of Non-Steroidal Anti- Inflammatory Agents on the Use and Costs of Analgesic Drugs	P.V. Grootendorst J.K. Marshall A.M. Holbrook L.R. Dolovich B.J. O'Brien A.R. Levy
No. 116:	The Wealth of Mexican Americans	D.A. Cobb-Clark V. Hildebrand
No. 117:	Precautionary Wealth and Portfolio Allocation: Evidence from Canadian Microdata	S. Alan

Number	Title	Author(s)
No. 118:	Financial Planning for Later Life: Subjective Understandings of Catalysts and Constraints	C.L. Kemp C.J. Rosenthal M. Denton
No. 119:	The Effect of Health Changes and Long-term Health on the Work Activity of Older Canadians	D. Wing Han Au T.F. Crossley M. Schellhorn
No. 120:	Pension Reform and Financial Investment in the United States and Canada	D. Béland
No. 121:	Exploring the Returns to Scale in Food Preparation (Baking Penny Buns at Home)	T.F. Crossley Y. Lu
No. 122:	Life-cycle Asset Accumulation and Allocation in Canada	K. Milligan
No. 123:	Healthy Aging at Older Ages: Are Income and Education Important?	N.J. Buckley F.T. Denton A.L. Robb B.G. Spencer
No. 124:	Exploring the Use of a Nonparametrically Generated Instrumental Variable in the Estimation of a Linear Parametric Equation	F.T. Denton
No. 125:	Borrowing Constraints, The Cost of Precautionary Saving and Unemployment Insurance	T.F. Crossley H.W. Low
No. 126:	Entry Costs and Stock Market Participation Over the Life Cycle	S. Alan
No. 127:	Income Inequality and Self-Rated Health Status: Evidence from the European Community Household Panel	V. Hildebrand P. Van Kerm