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September, 2014 

EXPLORING THE POPULATION IMPLICATIONS OF MALE PREFERENCE WHEN THE SEX 

PROBABILITIES AT BIRTH CAN BE ALTERED 

Frank T Denton and Byron G Spencer 

OBJECTIVE 

The paper explores the population effects of male preference stopping rules and of alternative 
combinations of fertility rates and male-biased birth sex ratios.  

METHODS 

The “laboratory” is a closed, stable population with five age groups and a dynamic process 
represented by a compact Leslie matrix. The new element is sex-selective abortion.  We 
consider nine stopping rules, one with no male preference, two with male preference but no 
abortion, and six with male preference and the availability of abortion to achieve a desired 
number of male births.  We calculate the probability distribution over the number of births and 
number of male births for each rule and work out the effects at the population level if the rule 
were adopted by all women bearing children. We then assess the impact of alternative 
combinations of fertility rates and male-biased sex ratios on the population.  

RESULTS 

In the absence of sex-selective abortion, stopping rules generally have no effect on the 
male/female birth proportions in the population, although they can alter the fertility rate, age 
distribution, and rate of growth. When sex-selective abortion is introduced the effect on 
male/female proportions may be considerable, and other effects quite different as well. The 
contribution of this paper is the quantification of effects that might have been predictable in 
general but which require model-based calculations to see how large they could be. As the 
paper shows, they could in fact be very large; a population in which sex-selective abortion was 
widely practised could look quite different from what it would otherwise be. 

 

Key words: birth sex probabilities, male preference, population implications 

Note: This paper is to be published in Demographic Research.  
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1. INTRODUCTION 

The theoretical consequences of sex-preference stopping rules at the family level have 

been known for a long time – in particular, the lack of any effect on the overall proportions of 

male and female births when the probabilities for individual births are fixed and the same 

throughout the population (Goodman, 1961, Keyfitz, 1968, and others). However, there is an 

accumulation of evidence now to indicate the use of abortion to alter those probabilities in 

favour of male births in countries where male preference is common; see Bongaarts (2013) for 

a recent survey of evidence of male preference and the use of sex-selective abortion.  Some 

countries of Eastern and Southern Asia have received particular attention in that regard (see, 

for example, Guilmato, 2010, Jiang, Li, and Feldman, 2011) and there is evidence of the use of 

abortion by emigrants from those countries who are resident elsewhere: Dubuc and Coleman 

(2007), Almond and Edlund (2008), Abrevaya (2009), Almond, Edlund, and Milligan (2013), Ray, 

Henry, and Urquia (2012). (While male preference has received most of the attention in the 

literature, including the present paper, female preference is certainly possible also; see Fuse, 

2013, for evidence of that from Japan.) Yamaguchi (1989) explored the effects of stopping rules 

on birth order and number of siblings in the absence of direct parental control over the sex 

probabilities. More recently, Yadava, Kumar, and Srivistava (2013) investigated the effects on 

the sex probabilities at birth of stopping rules when selective abortion is an option. The 

question on which we focus here is a “what if” question: What if there were a change in birth 

probabilities at the individual family level; how would that translate into changes in the 

characteristics of the population?             
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  This is an exploratory paper. We explore, in particular, the potential effects of male 

preference stopping rules on a stable population, and more generally, the implications of higher 

male/female ratios at birth. We begin by choosing a set of nine stopping rules, three with no 

abortion, six with, and derive the associated probability functions at the individual family level. 

We simulate the consequences of each rule for the population as a whole – in particular, its 

rate of growth and age and sex distributions, were the rule to be adopted throughout the 

population. We then move away from the idea of explicit stopping rules, specify nine 

alternative sex ratios at birth (assuming unspecified rules or mixtures of rules underlying them), 

couple the ratios with alternative fertility rates, and derive the stable population growth rates 

and sex distributions that would result.  

 The instrument that we use to simulate aggregate effects is a compact Leslie matrix 

representing an artificial population with two sexes and broad age groups. The matrix is 

calibrated with realistic survival rates, allows the insertion of alternative combinations of 

fertility rates and sex ratios at birth, as required for particular simulations, and can be used 

easily to derive the resultant stable populations. We note and discuss the properties of the 

matrix as a prelude to its application in the simulations.  To emphasize that our population is 

artificial we think of it as being the population of a mythical country Alpha, as we shall call it. 

The population of Alpha then provides a laboratory in which to explore the population 

implications of family preferences for male children.       
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2. STOPPING RULES 

 We consider the nine rules that a family might adopt. (The choice is somewhat arbitrary 

but provides a wide range of population outcomes for analysis.) One of the rules assumes no 

male preference. Two others reflect male preference but no effective way of altering the 

probabilities of a particular male or female birth. The remaining ones allow for the possibility of 

knowing the sex of a child at an early stage of pregnancy and using selective abortion to 

increase the probability that the next birth will be a male. In specifying the rules we abstract 

from miscarriages and stillbirths, and assume that in the absence of sex selective abortion a 

fetus would proceed to a live birth. We abstract also from the   possibility of multiple births; all 

births are singletons. We label the stopping rules S0, S1, …, S8. 

The rules fall into four categories. They differ with regard to male preference, 

preferences for family size, whether abortion is permitted and, if so, whether its use is limited 

or unlimited. Rule S0 is in category 1: it assumes no male preference and serves as a reference 

rule with which to compare the effects of the subsequent ones. Rules S1 and S2 fall into the 

second category: they assume male preference but no abortion option; S1 has a maximum 

number of births of three, S2 a maximum of four. Rules S3 and S4 fall into the third category: 

they assume male preference with limited use of abortion and maximum numbers of births of 

three and four, respectively. Rules S5 – S8, which make up the fourth category, assume male 

preference with unlimited use of abortion: they have maxima of three, four, five, and six births, 

in that order. The main distinguishing feature of this latter category is that unlimited abortion 
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allows exact determination of the number of males. The precise definitions of the rules are as 

follows. 

S0:  There is no male preference: stop only when the number of children ever born is three. 

S1:  Stop when the first male child is born or when the total number of children ever born is 

three, whichever comes first.  

S2:  Stop when the second male child is born or when the number of children ever born is four, 

whichever comes first.  

S3:  Stop when the first male child is born. If there have been two births and no males, check 

the sex of the next fetus and abort if female. Allow the third birth to take place only if a 

fetus is male or there have been three successive abortions of female fetuses. The third 

birth will then be either male (with high probability) or female, and the three births will 

include one or no males.    

S4:  Stop when the second male child is born. If there have been three births and one or no 

males, check the sex of the next fetus and abort if female. Allow the fourth birth to take 

place if the fetus is male or there have been three successive abortions of female fetuses. 

The fourth birth will then be either male (with high probability) or female, and the four 

births will include two, one, or no males.  

S5:  Permit no more than one female birth; abort additional female fetuses, with no limit on the 

number of abortions. Stop when there are two male births. 

S6:  Permit no more than one female birth; abort additional female fetuses, with no limit on the 

number of abortions. Stop when there are three male births. 
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S7:  Permit no more than two female births; abort additional female fetuses, with no limit on 

the number of abortions. Stop when there are three male births. 

S8:  Permit no more than two female births; abort additional female fetuses, with no limit on 

the number of abortions. Stop when there are four male births. 

The joint probability functions for number of births (n) and number of male births (m) for 

these stopping rules are as follows, with p the probability of a male birth (assumed 

independent of parity), q = 1 – p the probability of a female birth, and a the probability of an 

abortion, which is set equal to the probability of a female fetus (a = q, but there is no birth); it is 

assumed, in the absence of abortion, that any fetus would survive to become a live birth. We 

put abortion functions in square brackets and place them in the probability expressions in that 

form to indicate their position in the sequence of births. 

Rule S0: P0(n,m) = ( 
 
)pmq3-m    (for n = 3, m=0,1,2,3) 

Rule S1: P1(n,m) = (   
   

)pmqn-m    (for n = 1,2,3, m= 1) 

                              = q3    (for n = 3, m = 0) 

Rule S2: P2(n,m) =  (   
   

)pmqn-m    (for n = 2,3,4, m = 2) 

                              = 4pq3    (for n = 4, m = 1) 

                               = q4    (for n = 4, m = 0) 

Rule S3: P3(n,m) = (   
   

)pmqn-m    (for n = 1,2, m = 1) 

                              = q2[1+a+a2+a3]p    (for n = 3, m = 1) 
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                               = q2[a3]q    (for n = 3, m = 0)  

Rule S4: P4(n,m) = (   
   

)pmqn-m    (for n = 2,3, m = 2)  

                               = 4q3[1+a+a2+a3]p    (for n = 4, m = 1) 

                                = 3pq2[1+a+a2+a3]p    (for n = 4, m = 2)                                                 

                                 = q3[a3]q    (for n = 4, m = 0)    

Note: Rules S5 to S8 allow an unlimited number of abortions of unwanted female fetuses, and 

hence (in our theoretical framework) a desired male birth with certainty. In what follows, we 

use the symbol [1] to indicate such a male birth with probability 1, as distinguished from a 

natural birth with probability p. 

Rule S5: P5(n,m) = p2    (for n = 2, m = 2) 

                               = q[1][1] + pq[1]    (for n = 3, m = 2) 

Rule S6: P6(n,m) = p3    (for n = 3, m = 3) 

                               = q[1][1][1] + pq[1][1]  + p2q[1]     (for n = 4, m = 3) 

Rule S7: P7(n,m) = p3    (for n = 3, m = 3) 

                               = 3qp3     (for n = 4, m = 3) 

                                = q2[1][1][1] + 2pq2[1][1]  + 3p2q2[1]     (for n = 5, m = 3)   

 



8 
 

Rule S8: P8(n,m) = p4     (for n = 4, m = 4) 

                              = 4qp4     (for n = 5, m = 4) 

                               = q2[1][1][1][1] + 2q2p[1][1][1] + 3q2p2[1][1] + 4q2p3[1]     (for n = 6, m = 4) 

The numerical values of these probabilities are provided in Table 1. Cells with no entries 

represent impossible combinations of n and m, under the specified stopping rules, and show 

how the rules restrict the numbers of births and the male/female combinations. Also shown in 

the table are E(n) and E(m) (the expected numbers of births and male births), the proportion r = 

E(m)/E(n), and the corresponding male/female odds ratio, m/f = E(m)/(E(n)-E(m)). The 

probabilities assume  m/f = 1.05 for an individual birth in the absence of sex selection - a ratio 

common to many countries (U.S., U.K., Canada and others) - and that is also the overall ratio 

calculated from the expected values for stopping rules S0, S1, and S2. With a limited possibility 

of sex selection through abortion (maximum three times) the male/female ratio rises to 1.3 or 

1.4 (stopping rules S3, S4). With unlimited use of the abortion option (rules S5 to S8) it goes as 

high as 3.5 (in rule S6). (The assumption of an unlimited number of abortions is a matter of 

theoretical convenience. A more realistic interpretation would be that the number of abortions 

is limited but with a maximum sufficient to drive the probability of a male birth close to 1.) 

3. AN ARTIFICIAL POPULATION 

 We explore the potential implications for a population, in particular its age distribution, 

sex distribution, and rate of growth, if the above rules were to be adopted universally; beyond 

that, we explore, more generally, the aggregate effects of alternative combinations of fertility 
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rates and male/female birth distributions. For those purposes we specify an artificial 

population, one that is realistic in general form but simple enough to allow easy 

experimentation. To emphasize its artificiality we think of it as representing a mythical country 

Alpha, the population dynamics of which are defined by a two-sex Leslie matrix Q of dimension 

10 x10. (It is convenient to think of Alpha as a country but it could be a region within a country, 

or it could be defined by a common religion, ethnicity, or culture.) There are five broad age 

groups recognized in Alpha, each of which can be viewed as consisting of 20 individual ages. For 

convenience we label the groups as follows: Children (ages 0 to 19), Young Adults (ages 20 to 

39), Middle Aged (ages 40 to 59), Retired (60 to 79), and Old (ages 80 to 99), with no survivors 

at age 100. The Young Adult group is the fertile group in Alpha; women in that group bear all 

the children. (This simplification is convenient since it avoids having to deal with the age 

distribution of fertility rates, which is of little relevance for present purposes.) The population 

of Alpha provides a laboratory in which to ask what the aggregate effects would be of 

childbearing decisions made at the individual family level.  

 The first five rows of the Q matrix are for females, the last five for males. The Q(1,2) cell 

is calculated, for female babies, as  sf0rfF, where F is the fertility rate for Young Adult females 

(the total fertility rate, since there is only the one childbearing age group), rf is the proportion 

of females at birth, and sf0 is the survivor correction for female births (Kintner, 2008, p. 323). 

Correspondingly, for male babies, the Q(6,2) cell is calculated as sm0rmF. The values of rm, rf (= 1- 

rm), and F are set experimentally, at various levels; sf0 and sm0 are parameters with fixed values.  
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 The group-to-group survival rates are in the normal positions for a Leslie matrix: sf1 to sf4 

in cells Q(2,1), Q(3,2), Q(4,3), Q(5,4) for females, sm1 to sm4 in cells Q(7,6), Q(8,7), Q(9,8), 

Q(10,9) for males. We draw on 2001 Canadian life tables for calibration of the survival rates; 

the rates are derived from the Lx values in those tables. (The Canadian life tables are based on 

mortality data for the three years 2000, 2001, and 2002 but are commonly referred to as 2001 

tables; see Statistics Canada, 2006.) The Q matrix itself is presented in Table 2, with the survival 

rates shown in numerical form, as calibrated values, and the fertility elements (which vary from 

experiment to experiment) in symbolic form.   

 Each age group in the Alpha population consists of 20 years; correspondingly, the time 

interval can be thought of as 20 years, and referred to as a generation.  Now let X0 be a column 

vector representing the population at time 0. With Q fixed the population k generations later is 

given by Xk = QkX0. For an arbitrary initial specification of X0 the population can be converted to 

stable form by letting k increase until there is no further change in the proportionate age 

distribution. This provides a convenient procedure for simulating the effects of different 

specifications of F and rf. (The Perron-Frobenius theorem, as adapted to a Leslie matrix, ensures 

full ergodicity in the sense of nondegenerate convergence to a stable population with growth 

rate independent of the initial population vector, as long as the first two elements of the vector 

are not both zero. The age/sex structure of the stable population is also independent of the 

initial vector – in the sense discussed in the next section – for a sufficiently wide range of 

choices to make the process ergodic in that regard too, for practical purposes; any reasonable 

choice of an initial vector will do. See Cull and Vogt, 1973, Cohen, 1979, and Keyfitz and 

Caswell, 2005, chapter 7.)   
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4. PROPERTIES AND IMPLICATIONS OF THE Q MATRIX 

 The Q matrix has the following feature: the stable population form that it generates is 

cyclical. The matrix is imprimative, with index of of imprimativity 2, and has exactly two real 

nonzero eigenvalues, equal in value but of opposite sign (Keyfitz and Caswell, 2005). The cycle 

is two generations in length so that if stability is achieved the proportionate age distributions 

for Xk and Xk+2 are identical, and similarly for Xk+1and Xk+3. Only if the stable population is also 

stationary does the cycle disappear, making both the sizes and the proportionate age 

distributions at k and k+1 the same (the nonzero eigenvalues are then 1 and -1). In the general 

case, to put it differently, the stable form of the population encompasses, in a 2-period 

sequence, both a birth effect and a subsequent echo effect resulting from the entry of last 

generation’s newborn children into the childbearing Young Adult group this generation. While 

the proportionate age distributions behave cyclically the average of every two consecutive age 

distributions is strictly stable, and following  Cull and Vogt (1973), that is what we use in 

analysing stable population age distributions. The same is true of sex distributions. 

 The cyclical characteristic has implications for the calculation of growth rates also. Let Xt 

be the population vector in the (cyclically) stable growth state at time t. We then have Xt+2 = 

Q2Xt  = (1+G)Xt and Xt+3 = Q2Xt+1 = (1+G)Xt+1, where G is the two-generation rate of growth. The 

average one-generation (20-year) growth rate is then (1+G)1/2 – 1 and the average annual rate 

is g = (1+G)1/40 – 1. As it is common to think of population growth in terms of annual rates we 

show the g values in reporting aggregate results below. 
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 The link between the growth rate and the fertility rate and male/female ratio at birth 

can be established as follows. Let the elements of Xt be labeled Xti, i = 1,…,10. Based on Xt+2 = 

Q2Xt = (1+G)Xt, the first element of Xt+2 (Children) is then Xt+2,1 = sf1sf0rfFXt1 = (1+G)Xt1, and hence 

g can be calculated as (sf1sf0rfF)1/40 - 1. Note that, for a given fertility rate and proportion of 

female births, the rate of growth depends entirely on the survival rates for female children:  sf0, 

the survivor correction for female births, and sf1, the rate that determines the proportion of 

female children in one generation who survive to bear children in the next. All other survival 

rates are irrelevant for the growth rate. (That is a well-known result for a Leslie matrix; we note 

it here for use later in the paper.) 

5. POPULATION EFFECTS OF THE STOPPING RULES 

 The effects of each of the nine family stopping rules on the stable population of Alpha 

are displayed in Table 3, assuming in each case that the rule is adopted throughout the 

population by all families that have children. The overall proportions of male births and the 

corresponding male/female ratios are shown at the top of the table, along with the fertility 

rates and annual population growth rates. It is assumed that the proportion of women who 

bear no children is 15 percent in Alpha so that a fertility rate is calculated as .85 times the 

corresponding E(n) value in Table 1. (The choice of .85 for our fictitious country Alpha is 

arbitrary. For comparison, the proportion of women 40 – 44 in the United States who had given 

birth was reported as .82 for 2008, .90 for 1976, based on data from the Current Survey of 

Population; see Livingston and Cohn, 2010.)  Otherwise it is assumed that all families adopt the 
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same stopping rule. Also on display in the table are the age distributions of the population 

(averages over the stable two-period cycle) and the proportions of males in the five age groups.  

 The effects of a stopping rule on the population depend on the preferred number of 

male births incorporated into the rule as a goal, the “aggressiveness” with which the goal is 

pursued (the total number of births permitted in pursuit of it), and whether or not an abortion 

option is available. Rule S0 has no male preference goal, simply an overall fixed number of 

children, set at three. Rule S1 has a goal of one male birth, a willingness to allow up to three 

births to achieve that goal, and no abortion option. Rule S2 is similar but the goal is now two 

males, with up to four births permitted. As expected, the population sex ratio at birth is 

unaffected by the adoption of either S1 or S2: the male/female ratio at birth is 1.05 for each of 

the S0, S1, and S2 rules. (This result has been well known since the early work of Goodman, 

1961, Keyfitz, 1968, and others.) However, the population fertility rate, growth rate, and age 

distribution can be very much affected by the choice of a rule, even if the sex ratio is not. S0, 

with its fixed three births per family, produces a population fertility rate of 2.550, well above 

the natural replacement rate (which is a little under 2.1), and a corresponding positive annual 

rate of growth of .517 percent. S1, with its stop-at-the-first-male restriction, lowers the fertility 

rate to 1.467 and induces a negative rate of growth, -.862 percent per annum. S2, on the other 

hand, has the opposite effect, pushing the fertility rate up to 2.736 and the growth rate well 

into the positive range, .695 percent. The sex ratio of the population is of course the same 

under each of the three rules but the age distribution varies greatly: in S1, 18.6 percent of the 

population are in the Children category, 9.4 percent in the Old category; in S3, 30.7 percent are 

Children, 4.5 percent are Old. Thus the introduction of a stopping rule that leaves the sex ratio 
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at birth unchanged can have major effects on other characteristics of the population. This too is 

not a surprising result but the calculations for rules S0, S1, and S2 in Table 3 provide some 

indication of the possible sizes of the effects for rules that have no abortion option.  

 The abortion option, the new element in the calculation of stable population effects, is 

introduced in stopping rules S3 to S8. The calculations in Table 3 for these rules indicate the 

possibilities for increasing the male/female ratio at birth by the use of this option, beyond the 

natural ratio of 1.05 that applied under the earlier rules. S3 and S4 impose a limit of three on 

the number of abortions allowed, S5 to S8 impose no limit.  

 The smallest increase in the male/female birth ratio among the abortion-permitted rules 

comes about under S3 (an increase from 1.05 to 1.335), the largest comes about under S8 (an 

increase to 2.315). S3 induces a large negative rate of growth (-1.184 percent per year), S8 a 

large positive rate (.936 per year). Effects on the overall sex distribution of the population are, 

of course, pronounced: the proportion of males over the full set of rules in Table 3, all ages 

combined, varies from 49.1 percent (S1) to 76.1 percent (S6). Effects on the age distribution are 

also significant: the range for Children is 16.5 percent of the total population (S5) to 32.9 

percent (S8); the range for the Old group is 3.6 percent (S8) to 10.6 percent (S3). That a male 

preference stopping rule with sex selective abortion can (in theory) negate the growth effects 

of even a quite high fertility rate is well illustrated by S6: the fertility rate is 3.286 but the stable 

population is in a state of decline, at -.793 percent per annum.   

 We offer three summary generalizations at this point. The first is that universal adoption 

of a male preference stopping rule imposed at the family level can have major effects on the 
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characteristics of a population, which is obvious, but the magnitudes of those effects and their 

interrelationships are not obvious without an exercise such as the present one. Secondly, sex 

selective abortion as an element of a stopping rule (and the degree of limitation imposed on its 

frequency of use) can affect greatly the impact of the rule on the population; among other 

things, it can alter the sex ratio at birth, which would not otherwise happen at the population 

level. Thirdly, the effects that a given stopping rule can have on the proportion of children in a 

stable population results from the combination of its effect on the fertility rate and its effect on 

the proportion of females within the fertile age range, and those two effects may differ in the 

presence of sex-selective abortion. One consequence is a possible combination of high fertility 

and little or no population growth, or even negative growth.             

6. INTERACTION OF THE FERTILITY RATE AND THE SEX RATIO AT BIRTH 

 Now imagine that there is some unspecified set of stopping rules or mixture of stopping 

rules that prevails in the population of Alpha, with possible sex-selective abortion incorporated 

into the rules. Thus we move away from the idea of specifying particular rules and working out 

their implications, and simply consider alternative possible combinations of fertility rates and 

sex ratios at birth that might have resulted from such an unspecified set. (The ability to 

terminate pregnancies because of sex, coupled with possible heterogeneity of family choice of 

a rule across the population, would make virtually any such combination theoretically possible, 

over a range even wider than what we now explore.) We focus in particular on the growth rate 

and the overall proportion of males in the stable population of our fictitious country Alpha, 

selecting nine alternative fertility rates, from 1.0 to 5.0, and coupling them with nine alternative 
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male/female (m/f) ratios, from 1.05 to 1.45. The results are presented in Table 4.  The choice of 

fertility rates represents, in a rough way, a range of rates observed among countries in recent 

decades. The m/f ratios are a convenient choice for exploring the effects of variations in those 

ratios: the lower bound, 1.05, is a commonly observed ratio; the upper bound, 1.45, is an 

arbitrary value chosen for exploratory purposes – a very high value in comparison with ratios 

actually observed, although not as high as some of the hypothetical rule-generated ratios in 

Table 3.  

 Results for the 81 combinations of fertility rates and m/f ratios are shown in Table 4. 

The effect of increasing the sex ratio at birth in favour of males is to reduce the rate of growth 

and increase the proportion of males (decrease the proportion of females) in the population, 

for any given fertility rate. With a fertility rate of 2.5 children per woman and an m/f ratio of 

1.05, for example, the population of Alpha grows at a rate of .468 percent per year; if the m/f 

ratio is increased to 1.3, the growth rate falls to .179 percent, and if the ratio is allowed to 

increase further, to 1.45, the rate falls to .021 percent, almost no growth at all. To put it 

differently, the natural replacement fertility rate – the rate required to produce a stationary 

population - is a little under 2.1 children per woman with the commonly observed m/f ratio 

1.05; with a very high ratio of 1.45 the natural replacement rate is about 2.5 children per 

woman. The proportion of males in the overall population ranges from 48.4 percent at one 

extreme (F = 1.0, m/f = 1.05) to 58.4 percent at the other (F = 5.0, m/f = 1.45).  

 We observe that while a country with a very high fertility rate, by international 

standards, and accordingly a very high rate of population growth, would have its growth rate 
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reduced if the m/f ratio were to increase, it could still have a high positive rate of growth, 

within the bounds imposed on the ratio in Table 4 (and indeed much beyond those bounds). If 

Alpha had a fertility rate of 5.0, for example, and an m/f ratio of 1.05, its population would be 

growing at 2.224 percent per year, or about 25 percent over a decade. If its fertility rate were to 

remain the same, but its m/f ratio were to increase to as high as 1.45, its growth rate would fall 

to 1.769 per year, or about 19 percent per decade - a substantial decrease, certainly, but still a 

far distance from zero growth. Going back to Table 3, even stopping rule S8, with its fertility 

rate of 4.869 and an m/f ratio of 2.315, would produce a population growth rate of .936 per 

year (roughly 10 percent per decade). It is of course possible to imagine (in theory) a stopping 

rule that would combine with a fertility rate of 5.0 to produce a declining population but the 

associated m/f ratio would have to be extremely high. (A limiting case would be a rule that 

required all female fetuses to be aborted, in which case the population would vanish 

completely within five generations.) To obtain zero or negative growth rates would require 

much lower fertility rates and/or much higher m/f ratios than the ones just noted in the tables.      

   7. THE TRADE-OFF BETWEEN FERTILITY AND THE SEX RATIO AT BIRTH 

 The stable population rate of growth can be thought of as determined by two 

parameters, the fertility rate and the proportion of female births (conditional on the early-life 

female mortality rates sf0 and sf1). Manipulating the equation for the growth rate in section 4 

we may write it in the alternative form  ln(1+g) = H + .025 ln F + .025 ln rf, where the constant H 

= .025 (ln sf0 + ln sf1). The possibilities for trade-off between fertility and the female birth 

proportion are implicit in Table 4 but this form of the equation makes them explicit: for any 
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given value of g the pairs of F and rf that would yield that rate can be calculated. Trade-off 

curves of this kind are shown in Figure 1 for g = -1%, 0, and 1%, for illustration. The horizontal 

axis in the figure represents F, the vertical axis rf, and the points on a curve the alternative 

combinations of F and rf that would yield the given growth rate. A stationary population (g = 0), 

for example, could be supported by a fertility rate of 2.1 coupled with a female birth ratio of 

.483. But it could also be supported by a fertility rate of 1.6 coupled with a ratio of .634, or by a 

fertility rate of 3.0 coupled with a ratio of .338. The trade-off curves shift to the right as the 

growth rate increases but of course retain their curvature. 

8. ALTERNATIVE SURVIVAL RATES AND THE RATE OF GROWTH 

 We have calibrated the Q matrix by assigning to it a particular set of survival rates. A 

different set would affect the results rather little. The results that we derive for a stable 

population depend critically on the fertility rate and the male/female proportions at birth; they 

are relatively insensitive to the choice of survival rates. We illustrate that now by recalculating 

some of the stable population growth rates in Table 4 with death rates increased by multiples 

of two, five, and ten, and the associated survival rates reduced accordingly.  

 As shown earlier, the annual population growth rate is given by g = (sf1sf0rfF)1/40 – 1 so 

that the only two survival rates that affect the stable growth rate are sf0 and sf1. We now lower 

these survival rates by assuming that the corresponding death rates increase by a factor K. A 

survival rate s is thus replaced by s* = 1 – K(1 - s). We choose four alternative K values: K = 1, 2, 

5, 10. Both survival rates are adjusted in this way and the resulting growth rates are shown in 

Table 5 for alternative combinations of m/f and F. To show the limits of the effects of the 
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recalculations we choose the combinations at the four corners of the growth rate panel in Table 

4, the four combinations of m/f = 1.05 or 1.45 with F = 1.0 or  5.0, that is. As in Table 4, the 

growth rates are expressed in percentage form. 

 Setting K = 1 means no change in survival rates, and hence stable population growth 

rates that are identical to those in Table 4. A two-fold increase in the death rates (K = 2) 

changes the growth rates by no more than .031 percent, a five-fold increase (K = 5) by no more 

than .123 percent. Even a ten-fold increase (K = 10) changes the rates at most by .281 percent. 

The growth rates in Table 5 thus show very little sensitivity to changes in survival rates. 

9. SUMMARY AND DISCUSSION 

 The purpose of the paper has been to explore the effects of male preference stopping 

rules on the characteristics of a population, and more generally the population effects of 

alternative combinations of fertility rates and male-biased birth sex ratios. The “laboratory” for 

the exploration is a mythical country Alpha with a closed, stable population, five age groups, 

and a dynamic process represented by a compact Leslie matrix. The new element in the analysis 

is sex-selective abortion.  In the absence of sex-selective abortion, stopping rules have no effect 

on the male/female proportions; in the presence of sex-selective abortion the effect on the 

male/female proportions may be large, and other effects quite different from what they would 

otherwise be.    

 We began with a particular set of nine stopping rules, one with no male preference, two 

with male preference but no abortion, and six with male preference and the availability of 

abortion as an aid to achieving a desired number of male births.  We calculated the probability 
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distribution over the number of births and number of male births for each rule. We then 

assumed, for each, that it was adopted by all women bearing children, and worked out the 

effects that that would have on the population – in particular the effects on the male/female 

ratio at birth, the overall fertility rate, the age distribution of the population, the sex 

distribution at each age, and the rate of growth. We then changed course: we assumed that 

there were unspecified combinations of stopping rules that could generate particular fertility 

rates and male-biased sex ratios at the aggregate level, and calculated the effects that that 

would have on the population for a large number of combinations of the two. (Given a wide 

range of possible stopping rules, and potential heterogeneity in the choice of a rule within the 

population, there could in fact be a wide range of fertility/sex-ratio outcomes within our 

framework of analysis.) 

 There are several observations of a general nature that one can make, based on the 

calculations in the paper. The first is obvious and well known: universal adoption of a stopping 

rule when there is no ability to affect the probability that an individual birth will be of a given 

sex can affect the fertility rate, age distribution, and rate of growth of the population, but not 

its sex distribution. The second observation is that the introduction of sex selective abortion as 

an option in family planning makes it possible for a stopping rule (or combination of rules) to 

affect the sex distribution of births at the aggregate level, and hence the sex distribution at 

every age in a stable population; in particular, it would allow a societal preference for male 

children to manifest itself and have a major impact on the characteristics of the population. (As 

illustration of what “skewed sex ratios at birth” can do to actual populations, see Guilmato, 

2010, with regard to China and India.)  The third observation is that the influence of a male 
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preference stopping rule on the population can be thought of as being determined by (a) the 

targeted number of male children, (b) the “aggressiveness” built into the stopping rule, 

represented by the number of births that would be accepted in trying to achieve the target, (c) 

the availability of abortion as a strategic element in the application of the rule, and (d) the 

frequency with which abortion would be permitted in applying the rule. The fourth observation 

is that the number of births is, of course, determined jointly by the fertility rate and the 

proportion of females in the fertile age range, and hence by the sex ratio at birth in the 

previous generation, which affects the number of fertile women in the present one. The 

population growth rate is thus similarly determined – or, to put it differently, the same growth 

rate can be achieved by alternative combinations of the fertility rate and birth sex ratio, as seen 

in the trade-off curves of Figure 1. The fifth observation is that the rate of population growth, in 

particular, is quite insensitive to the specification of survival rates, and in fact only the early-life 

rates for females matter (sf0, sf1). We calibrated our model with a given set of survival rates but 

changing those rates has little effect on the growth rate; growth is driven almost entirely by the 

fertility rate and male/female ratio at birth in our experiments. 

            It is not surprising that the ability to change the birth probabilities in favour of males 

would have the types of effects just mentioned, if one thinks about the matter. What we would 

like to be viewed as the contribution of this paper is the analytical quantification of effects that 

might have been predictable in general, but which require model-based calculations to see how 

large they could in fact be. That has been our aim. In terms of the existing literature, we would 

like to think of the paper, with its emphasis on population effects, as a useful complement to 
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the growing literature on sex-selective abortion and stopping rules at the family level, as noted 

in our introduction.   

It is perhaps appropriate, in conclusion, to take note of some of the issues that we have 

not attempted to address. One thing the paper does not do is consider the dynamics of 

adjustment – the process of moving from one stable state to another in a situation in which sex 

selection becomes more widely practised. Nor does it consider how an actual (as opposed to 

theoretical) population might evolve in such a situation, or the population implications of 

migration from a country or region in which sex selection is more common to one in which it is 

not. (See in that regard our references at the beginning of the paper.) How an increased ratio of 

males to females in the general population might itself come to influence future fertility choices 

is another question that could be put on the list, and more generally the societal consequences 

of an increased proportion of men in the  population, and a decreased proportion of women.  

At an analytical level, we have assumed homogeneity of fecundity in specifying stopping rules, 

and common male/female probabilities at birth in the absence of sex-selective abortion, thus 

ignoring natural differences that may in fact exist in a population. Also, we have disregarded 

the role that child mortality might play in the application of stopping rules – the death of a son, 

say, which might alter preferences in regard to subsequent births. One can think too of other 

matters of possible relevance that play no role in our analysis. Having said that, we observe that 

all papers ignore some things in order to focus on others – and so it is with ours.  
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         Table 1. Probability Distributions and Related Statistics at the Family Level: Numbers of 

                          Births and Numbers of Male Births Under Alternative Stopping Rules 

Number 
of births 

(n) 

Number 
of males 

(m) 

Prob(n,m) under given stopping rule 

  S0   S1   S2   S3   S4   S5   S6   S7   S8 

1 0    --    --    --    --    --    --    --    --    -- 

1 1    -- 0.512    -- 0.512    --    --    --    --    -- 

2 0    --    --    --    --    --    --    --    --    -- 

2 1    -- 0.250    -- 0.250    --    --    --    --    -- 

2 2    --    -- 0.262    -- 0.262 0.262    --    --    -- 

3 0 0.116 0.116    -- 0.013    --    --    --    --    -- 

3 1 0.366 0.122    -- 0.224    --    --    --    --    -- 

3 2 0.384    -- 0.256    -- 0.256 0.738    --    --    -- 

3 3 0.134    --    --    --    --    -- 0.134 0.134    -- 

4 0    --    -- 0.057    -- 0.007    --    --    --    -- 

4 1    --    -- 0.238    -- 0.130    --    --    --    -- 

4 2    --    -- 0.187    -- 0.345    --    --    --    -- 

4 3    --    --    --    --    --    -- 0.866 0.197    -- 

4 4    --    --    --    --    --    --    --    -- 0.069 

5 0    --    --    --    --    --    --    --    --    -- 

5 1    --    --    --    --    --    --    --    --    -- 

5 2    --    --    --    --    --    --    --    --    -- 

5 3    --    --    --    --    --    --    -- 0.669    -- 

5 4    --    --    --    --    --    --    --    -- 0.134 

5 5    --    --    --    --    --    --    --    --    -- 

6 0    --    --    --    --    --    --    --    --    -- 

6 1    --    --    --    --    --    --    --    --    -- 

6 2    --    --    --    --    --    --    --    --    -- 

6 3    --    --    --    --    --    --    --    --    -- 

6 4    --    --    --    --    --    --    --    -- 0.797 

           
E(n) 3.000 1.726 3.219 1.726 3.219 2.738 3.866 4.535 5.728 

   E(m) 1.537 0.884 1.649 0.987 1.857 2.000 3.000 3.000 4.000 

E(m)/E(n) 0.512 0.512 0.512 0.572 0.577 0.731 0.776 0.662 0.698 

m/f ratio 1.050 1.050 1.050 1.335 1.362 2.711 3.466 1.955 2.315 

                    

Note: In the absence of selective abortion a birth is assumed to be male with probability .5122. 

             A double dash indicates an impossible n,m combination. 
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Table 2. The Q Matrix for a Stable Alpha Population with Calibrated Survival Rates 

 
 Col. 1  Col. 2  Col. 3  Col. 4  Col. 5  Col. 6  Col. 7  Col. 8  Col. 9 Col. 10 

Row 1 0   sf0rfF 0 0 0 0 0 0 0 0 

Row 2 0.9942 0 0 0 0 0 0 0 0 0 

Row 3 0 0.9769 0 0 0 0 0 0 0 0 

Row 4 0 0 0.8635 0 0 0 0 0 0 0 

Row 5 0 0 0 0.3798 0 0 0 0 0 0 

Row 6 0  sm0rmF    0 0 0 0 0 0 0 0 

Row 7 0 0 0 0 0 0.9875 0 0 0 0 

Row 8 0 0 0 0 0 0 0.9617 0 0 0 

Row 9 0 0 0 0 0 0 0 0.7850 0 0 

Row10 0 0 0 0 0 0 0 0 0.2575 0 

Note: sf0 = .9940, sm0 = .9924. 
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Table 3. Stable Alpha Populations Resulting from Alternative Stopping Rules 

 
Stopping rule                               

  S0 S1 S2 S3 S4 S5 S6 S7 S8 

Proportion male births (rm) 0.512 0.512 0.512 0.572 0.577 0.731 0.776 0.662 0.698 

Male/female ratio at birth 1.050 1.050 1.050 1.335 1.362 2.711 3.466 1.955 2.315 

Fertility rate (F) 2.550 1.467 2.736 1.467 2.736 2.327 3.286 3.855 4.869 

Annual % growth rate 0.517 -0.862 0.695 -1.184 0.339 -1.189 -0.793 0.637 0.936 

          
Population age distribution 

         
     - children 29.2 18.6 30.7 16.5 27.8 16.7 19.5 30.4 32.9 

     - young adults 26.1 21.9 26.5 20.8 25.8 21.1 22.6 26.5 27.1 

     - middle aged 22.8 25.3 22.3 25.5 23.3 25.8 25.6 22.6 21.7 

     - retired 17.0 24.8 16.0 26.6 17.8 26.5 24.1 16.2 14.6 

     - old 4.9 9.4 4.5 10.6 5.2 9.9 8.1 4.3 3.6 

     - all ages 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

          
Proportion males 

         
     - children 51.2 51.2 51.2 57.1 57.6 73.0 77.6 66.1 69.8 

     - young adults 51.0 51.0 51.0 57.0 57.5 72.9 77.5 66.0 69.7 

     - middle aged 50.6 50.6 50.6 56.6 57.1 72.6 77.2 65.6 69.3 

     - retired 48.2 48.2 48.2 54.2 54.7 70.6 75.5 63.4 67.3 

     - old 38.7 38.7 38.7 44.5 45.0 62.0 67.6 54.1 58.2 

     - all ages 49.9 49.1 50.0 54.9 56.3 71.2 76.1 65.0 68.9 

                    

Note: The proportion of women bearing no children is set at 15% for this table. 
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Table 4. Annual Rate of Growth and Proportion of Males in a Stable Alpha Population with Alternative 
Combinations of Fertility Rates and Male/Female Ratios at Birth 

 

Fertility rate (F)                                                      

Male/female 
ratio (r/(1-r))    

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

 
---------- rate of growth (%) ---------- 

1.05 -1.808 -0.807 -0.091 0.468 0.927 1.316 1.655 1.955 2.224 

1.10 -1.867 -0.867 -0.152 0.407 0.866 1.255 1.594 1.893 2.162 

1.15 -1.925 -0.925 -0.210 0.348 0.806 1.196 1.534 1.833 2.102 

1.20 -1.981 -0.982 -0.268 0.290 0.749 1.138 1.476 1.775 2.043 

1.25 -2.036 -1.038 -0.324 0.234 0.692 1.081 1.419 1.718 1.986 

1.30 -2.090 -1.092 -0.378 0.179 0.637 1.025 1.363 1.662 1.930 

1.35 -2.142 -1.145 -0.432 0.125 0.583 0.971 1.309 1.607 1.875 

1.40 -2.194 -1.197 -0.484 0.072 0.530 0.918 1.255 1.554 1.822 

1.45 -2.244 -1.248 -0.536 0.021 0.478 0.866 1.203 1.501 1.769 

 
---------- proportion of males (%) ---------- 

1.05 48.4 49.1 49.6 49.9 50.1 50.2 50.4 50.4 50.5 

1.10 49.5 50.3 50.7 51.0 51.2 51.4 51.5 51.6 51.7 

1.15 50.6 51.3 51.8 52.1 52.3 52.5 52.6 52.7 52.8 

1.20 51.6 52.3 52.8 53.1 53.3 53.5 53.6 53.7 53.8 

1.25 52.6 53.3 53.8 54.1 54.3 54.5 54.6 54.7 54.8 

1.30 53.5 54.3 54.7 55.0 55.3 55.4 55.6 55.7 55.8 

1.35 54.4 55.2 55.6 56.0 56.2 56.3 56.5 56.6 56.7 

1.40 55.3 56.0 56.5 56.8 57.0 57.2 57.4 57.5 57.5 

1.45 56.1 56.8 57.3 57.6 57.9 58.1 58.2 58.3 58.4 
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Table 5. Effects of Higher Mortality on the Annual Rate of Growth in a Stable Alpha Population: Death Rates 
Increased for Female Births and Female Children 

  
 Percent growth when death rates increased by factor K         

            F                       m/f                    K = 1                   K = 2          K = 5         K = 10 

1.000 1.05 -1.808 -1.837 -1.926 -2.078 

1.000 1.45 -2.244 -2.273 -2.362 -2.513 

5.000 1.05 2.224 2.193 2.101 1.943 

5.000 1.45 1.769 1.739 1.647 1.490 

Note: See text for the basis of the calculations in this table. When K = 1 there is no change in death rates and 
the growth rates are the same as in Table 4. 

 




