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POPULATION CONSEQUENCES OF MALE SELECTION AT BIRTH WHEN THE SEX PROBABILITIES CAN BE 

ALTERED 

Frank T. Denton and Byron G. Spencer 

McMaster University 

ABSTRACT 

We explore the implications of male preference stopping rules for a stable population, and more 

generally the aggregate implications of higher male/female birth ratios. We begin by specifying nine 

alternative family stopping rules, derive their probability functions, and simulate the long-run effects on 

population growth rates and age and sex ratios. We then move away from the idea of explicit stopping 

rules and simulate the population effects of 81 alternative combinations of birth sex ratios and fertility 

rates under (implicit) preference for male children . The results show how male preference and fertility 

choices at the individual family level can affect the overall characteristics of a population. 

JEL codes: J12, J13, C63 

Keywords: Male preference; Sex selection; Stopping rules; Population effects 

 

1. INTRODUCTION 

The theoretical consequences of sex-preference stopping rules at the family level have been 

known for a long time – in particular the lack of any effect on the overall proportions of male and female 

births when the probabilities for individual births are fixed and the same throughout the population 

(Goodman (1961), Keyfitz (1968)). However, there is an accumulation of evidence now to indicate the 

use of abortion to alter those probabilities in favour of male births in countries where male preference is 

common; see Bongaarts (2013) for a recent survey of evidence of male preference and the use of sex-

selective abortion.  Some countries of Southeast Asia have received particular attention in that regard 

and there is evidence of the use of abortion by emigrants from those countries who are resident 

elsewhere: Dubuc and Coleman (2007), Almond and Edlund (2008), Abrevaya (2009), Almond et al. 

(2013), Ray et al. (2012). (While male preference has received most of the attention in the literature, 

including the present paper, female preference is certainly possible also; see Fuse (2013), for evidence 

of that from Japan.) Yamaguchi (1989) explored the effects of stopping rules on birth order and number 

of siblings in the absence of direct parental control over the sex probabilities. More recently, Yadava et 

al. (2013) investigated the effects on the sex ratio at birth of stopping rules when selective abortion is an 

option. The question on which we focus here is how changes in the sex ratio at the individual family 

level would translate into changes in the characteristics of the population.             
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  We consider the implications of male preference stopping rules for a stable population, and 

more generally the implications of higher male/female ratios at birth. We begin by choosing a set of nine 

stopping rules, three with no abortion, six with, and derive the associated probability functions at the 

individual family level. (Our approach in this regard is similar to that of Yadava et al. 2012, although our 

choice of rules is somewhat different.) We simulate the consequences of each rule for the population as 

a whole – in particular, its rate of growth and age and sex distributions. We then move away from the 

idea of explicit stopping rules, specify nine alternative sex ratios at birth (which may have unspecified 

rules underlying them), couple the ratios with alternative fertility rates, and derive the stable population 

growth rates and sex distributions that result.  

 The instrument that we use to simulate aggregate effects is a compact Leslie matrix 

representing an artificial population with two sexes and broad age groups. The matrix is calibrated with 

realistic survival rates, allows the insertion of alternative combinations of fertility rates and sex ratios at 

birth, as required for particular simulations, and can be used easily to derive the resultant stable 

populations. We note and discuss the properties of the matrix as a prelude to its application in the 

simulations.        

  

2. STOPPING RULES 

 We consider the following nine rules that a family might adopt. The first assumes no male 

preference. The next two reflect male preference but no effective way of altering the probabilities of a 

particular male or female birth. The remaining ones allow for the possibility of knowing the sex of a child 

at an early stage of pregnancy and using selective abortion to increase the probability that the next birth 

will be a male. In specifying the rules we abstract from miscarriages and stillbirths, and assume that in 

the absence of sex selective abortion a fetus would proceed to a live birth. We abstract also from the 

possibility of multiple births; all births are singletons. We label the stopping rules S0, S1, …, S8. 

S0: There is no male preference: stop only when the number of children ever born is three. 

S1: Stop when the first male child is born or when the total number of children ever born is three, 

whichever comes first.  

S2: Stop when the second male child is born or when the number of children ever born is four, 

whichever comes first.  

S3: Stop when the first male child is born. If there have been two births and no males, check the sex of 

the next fetus and abort if female. Allow the third birth to take place only if a fetus is male or there have 

been three successive abortions of female fetuses. The third birth will then be either male (with high 

probability) or female, and the three births will include one or no males.    

S4: Stop when the second male child is born. If there have been three births and one or no males, check 

the sex of the next fetus and abort if female. Allow the fourth birth to take place if the fetus is male or 
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there have been three successive abortions of female fetuses. The fourth birth will then be either male 

(with high probability) or female, and the four births will include two, one, or no males.  

S5: Permit no more than one female birth; abort additional female fetuses, with no limit on the number 

of abortions. Stop when there are two male births. 

S6: Permit no more than one female birth; abort additional female fetuses, with no limit on the number 

of abortions. Stop when there are three male births. 

S7: Permit no more than two female births; abort additional female fetuses, with no limit on the number 

of abortions. Stop when there are three male births. 

S8: Permit no more than two female births; abort additional female fetuses, with no limit on the number 

of abortions. Stop when there are four male births. 

The joint probability functions for number of births (n) and number of male births (m) for these stopping 

rules are as follows, with p the probability of a male birth (assumed independent of parity), q = 1 – p the 

probability of a female birth, and a the probability of an abortion, which is set equal to the probability of 

a female fetus (a = q, but there is no birth); it is assumed, in the absence of abortion, that any fetus 

would survive to become a live birth. We put abortion functions in square brackets and place them in 

the probability expressions in that form to indicate their position in the sequence of births. 

Rule S0: P0(n,m) = (  
 
)pmq3-m    (for m=0,1,2,3) 

Rule S1: P1(n,m) = (   
   

)pmqn-m    (for n = 1,2,3, m= 1) 

                              = q3    (for n = 3, m = 0) 

Rule S2: P2(n,m) =  (   
   

)pmqn-m    (for n = 2,3,4, m = 2) 

                              = 4pq3    (for n = 4, m = 1) 

                               = q4    (for n = 4, m = 0) 

Rule S3: P3(n,m) = (   
   

)pmqn-m    (for n = 1,2, m = 1) 

                              = q2[1+a+a2+a3]p    (for n = 3, m = 1) 

                               = q2[a3]q    (for n = 3, m = 0)  

Rule S4: P4(n,m) = (   
   

)pmqn-m    (for n = 2,3, m = 1)  

                               = 4q3[1+a+a2+a3]p    (for n = 4, m = 1) 

                                = 3pq2[1+a+a2+a3]p    (for n = 4, m = 2)                                                 

                                 = q3[a3]q    (for n = 4, m = 0)    
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Note: Rules S5 to S8 allow an unlimited number of abortions of unwanted female fetuses, and hence (in 

our theoretical framework) a desired male birth with certainty. In what follows, we use the symbol  [1] 

to indicate such a male birth with probability 1, as distinguished from a natural birth with probability p. 

Rule S5: P5(n,m) = p2    (for n = 2, m = 2) 

                               = q[1][1] + pq[1]    (for n = 3, m = 2) 

Rule S6: P6(n,m) = p3    (for n = 3, m = 3) 

                               = q[1][1][1] + pq[1][1]  + p2q[1]     (for n = 4, m = 3) 

Rule S7: P7(n,m) = p3    (for n = 3, m = 3) 

                               = 3qp3     (for n = 4, m = 3) 

                                = q2[1][1][1] + 2pq2[1][1]  + 3p2q2[1]     (for n = 5, m = 3)   

Rule S8: P8(n,m) = p4     (for n = 4, m = 4) 

                              = 4qp4     (for n = 5, m = 4) 

                               = q2[1][1][1][1] + 2q2p[1][1][1] + 3q2p2[1][1] + 4q2p3[1]     (for n = 6, m = 4) 

The numerical values of these probabilities are provided in Table 1. Cells with no entries represent 

impossible combinations of n and m, under the specified stopping rules, and show how the rules restrict 

the numbers of births and the male/female combinations. Also shown in the table are E(n) and E(m) (the 

expected numbers of births and male births), the proportion r = E(m)/E(n), and the corresponding 

male/female odds ratio, m/f = E(m)/(E(n)-E(m)). The probabilities assume  m/f = 1.05 for an individual 

birth in the absence of sex selection - a ratio common to many countries (U.S., U.K., Canada and others) 

- and that is also the overall ratio calculated from the expected values for stopping rules S0, S1, and S2. 

With a limited possibility of sex selection through abortion (maximum three times) the male/female 

ratio rises to 1.3 or 1.4 (stopping rules S3, S4). With unlimited use of the abortion option (rules S5 to S8) 

it goes as high as 3.5 (in rule S6). (The assumption of an unlimited number of abortions is a matter of 

theoretical convenience. A more realistic interpretation would be that the number of abortions is 

limited but with a maximum sufficient to drive the probability of a male birth close to 1.) 

 

3. AN ARTIFICIAL POPULATION 

 We explore the effects of the various stopping rules on a population, in particular its age 

distribution, sex distribution, and rate of growth; beyond that, we explore, more generally, the 

aggregate effects of alternative combinations of fertility rates and male/female birth distributions. For 

those purposes we specify a closed artificial population, one that is realistic in general form but simple 

enough to allow easy experimentation. To emphasize its artificiality we think of it as representing a 

mythical country Alpha, the population dynamics of which are defined by a two-sex Leslie matrix Q of 
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dimension 10 x10. There are five broad age groups recognized in Alpha, each of which can be viewed as 

consisting of 20 individual ages. For convenience we label the groups as follows: Children (ages 1 to 19), 

Young Adults (ages 20 to 39), Middle Aged (ages 40 to 59), Retired (60 to 79), and Old (ages 80 to 99), 

with no survivors at age 100. The Young Adult group is the fertile group in Alpha; women in that group 

bear all the children. (This simplification is convenient since it avoids having to deal with the age 

distribution of fertility rates, which is of little relevance for present purposes.) The population of Alpha 

provides a laboratory in which to ask what the aggregate effects would be of childbearing decisions 

made at the individual family level.  

 The first five rows of the Q matrix are for females, the last five for males. The Q(1,2) cell is 

calculated, for female babies, as sf0(1-r)F, where F is the fertility rate for Young Adult females (the total 

rate, since there is only the one childbearing age group), r is the proportion of males at birth, and sf0 is 

the survivor correction for female births (Keyfitz and Caswell (2005)). Correspondingly, for male babies, 

the Q(6,2) cell is calculated as sm0rF. The values of r and F are set experimentally, at various levels; sf0 

and sm0 are parameters with fixed values.  

 The group-to-group survival rates for females are in the normal positions for a Leslie matrix: sf1 

to sf4 in cells Q(2,1), Q(3,2), Q(4,3), Q(5,4). The survival rates for males are similarly in the normal 

positions: sm1 to sm4 in cells Q(7,6), Q(8,7), Q(9,8), Q(10,9). The survival rates are calculated from life 

table Lx values. (A curious feature of Alpha is that its life tables are exactly the same as the 2001 

Canadian life tables, thus allowing its Lx values to be derived from that source. The Canadian tables are 

based on data for the three years 2000, 2001, and 2002 but are commonly referred to as 2001 tables; 

see Statistics Canada (2006).)  All remaining cells of the Q matrix have zero values.  

 Each age group in Alpha consists of 20 years; correspondingly, the time interval can be thought 

of as 20 years, and referred to as a generation.  Now let X0 be a column vector representing the 

population at time 0. With Q fixed the population k generations later is given by Xk = QkX0. For an 

arbitrary initial specification of X0 the population can be converted to stable form (to any desired 

accuracy) by letting k increase until there is no further change in the proportionate age distribution. This 

provides a convenient procedure for simulating the effects of different specifications of F and r. (The 

Perron-Frobenius theorem, as adapted to a Leslie matrix, ensures ergodicity so the choice of an initial 

vector does not matter, as long as the elements 1 and  2 are positive; see Cull and Vogt (1973), Cohen 

(1979).)   

 

4. PROPERTIES AND IMPLICATIONS OF THE Q MATRIX 

 The Q matrix has the following feature: the stable population form that it generates is cyclical. 

The matrix is imprimative, with index of imprimativity 2, and has exactly two real nonzero eigenvalues, 

equal in value but of opposite sign (Keyfitz and Caswell (2005)). The cycle is two generations in length so 

that if stability is achieved the proportionate age distributions for Xk and Xk+2 are identical, and similarly 

for Xk+1and Xk+3. Only if the stable population is also stationary does the cycle disappear, making both the 

sizes and the proportionate age distributions at k and k+1 the same (the nonzero eigenvalues are then 
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equal to 1 and -1). In the general case, to put it differently, the stable form of the population 

encompasses, in a 2-period sequence, both a birth effect and the subsequent echo effect resulting from 

the entry of last generation’s newborn children into the childbearing Young Adult group this generation. 

While the proportionate age distributions behave cyclically the average of consecutive age distributions 

over the period of the cycle is strictly stable (Cull and Vogt (1973)), and that is what we use in analysing 

stable population characteristics. The same is true of sex distributions. 

 The cyclical characteristic has implications for the calculation of growth rates also. Let Xt be the 

population vector in the (cyclically) stable growth state at time t. We then have Xt+2 = Q2Xt  = (1+G)Xt and 

Xt+3 = Q2Xt+1 = (1+G)Xt+1, where G is the two-generation rate of growth. The average one-generation (20-

year) growth rate is then (1+G)1/2 – 1 and the average annual rate is g = (1+G)1/40 – 1. As it is common to 

think of population growth in terms of annual rates we show the g values in reporting aggregate results 

below. 

 The link between the growth rate and the fertility rate and proportion of males at birth can be 

established as follows. Let the elements of Xt be labeled Xti, i = 1,…,10. Based on Xt+2 = Q2Xt = (1+G)Xt, the 

first element of Xt+2 (Children) is then Xt+2,1 = sf1sf0(1-r)FXt1 = (1+G)Xt1, and hence g can be calculated as  

(sf1sf2(1-r)F)1/40 – 1.  

 A check on the use of the 10x10 Leslie matrix (with only one fertile age group) to approximate 

the dynamics of a full, single-age life table population, is the following. With an m/f ratio of 1.05, the 

fertility rate required to generate a stationary population based on our Leslie matrix is virtually identical 

to the total fertility rate required to do the same using the full set of Canadian single-age life table death 

probabilities – just under 2.1 children per woman, based on a separate calculation.     

 

5. POPULATION EFFECTS OF THE STOPPING RULES 

 The effects of the nine family stopping rules on the stable population of Alpha are displayed, in 

summary form, in Table 2. The overall proportions of male births and the corresponding male/female 

ratios are shown at the top of the table, along with the fertility rates and annual population growth 

rates. It is assumed that the proportion of women who bear no children is 15 percent in Alpha so that a 

fertility rate is calculated as .85 times the corresponding E(n) value in Table 1. (The choice of .85 for our 

fictitious country Alpha is arbitrary. For comparison, the proportion of women 40 – 44 in the United 

States who had given birth was reported as .82 for 2008, .90 for 1976, based on data from the Current 

Survey of Population; see Livingston and Cohn (2010).)  Otherwise it is assumed that all families adopt 

the same stopping rule. Also on display in the table are the age distributions of the population (averages 

over the stable two-period cycle) and the proportions of males in the five age groups.  

 Stopping rules S0 to S2 do not allow abortion to be used to affect the sex ratio at birth; they 

differ in their limits on number of children at the family level, and hence the resulting fertility rates, but 

have no effect on the aggregate male/female ratio at birth – a general result that is well known; the m/f 

ratio is 1.05 in all three cases. The age distribution of the population varies but the sex distribution of 
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the population is (necessarily) the same in all three.  Rules S3 and S4 permit restricted use of abortion, a 

consequence being that the m/f ratio increases to almost 1.4 and the population sex distribution shifts 

accordingly, in favour of males – 55 or 56 percent males for the population as a whole, compared with 

49 or 50 percent for the S0 – S2 no-abortion rules. The differing family limits on number of children for 

S3 and S4 produce a big difference in the overall fertility rates for those two rules and there are 

differences also in the population age distributions. A comparison of the S3 and S1 results is of particular 

interest: the fertility rate is the same in the two cases, 1.467, but there is a smaller proportion of young 

adult women to bear children with the S3 rule, and hence a more rapid rate of decline in the population.  

 Stopping rules S5 to S8 permit unlimited use of abortion (or, if one prefers, limited use, but with 

the limits high enough that the result is essentially the same). The m/f ratio at birth for these rules 

ranges from about 2.0 to 3.5 - very high ratios but ones that allow the effects of male birth selection to 

stand out clearly in our analytical framework. These rules produce an Alpha population with an overall 

proportion of males of 65.0 percent at the low end, 76.1 percent at the upper end, for the population as 

a whole, and higher ratios still for the younger age groups in the population. Now the offsetting effect of 

fewer women of childbearing age is obvious: S6 produces a fertility rate of 3.3 but a population that is 

declining at about .8 percent per year; S5 produces a fertility rate of 2.3 (still well above the natural 

replacement level) but a population that is declining at 1.2 percent a year.  

 

6. INTERACTION OF THE FERTILITY RATE AND THE SEX RATIO AT BIRTH 

 We now move away from the idea of specific stopping rules and consider simply the 

implications of alternative combinations of fertility rates and male/female ratios at birth. (One may 

think of there being sex selection and family size preferences underlying the combinations but they are 

no longer explicit.) We focus in particular on the growth rate and the overall proportion of males in the 

population of our fictitious country Alpha, choosing nine alternative fertility rates, from 1.0 to 5.0, and 

coupling them with nine alternative m/f ratios, from 1.05 to 1.45. The results are presented in Table 3.  

The choice of fertility rates reflects in a rough way the range of rates observed among countries in 

recent decades. The m/f ratios are a convenient choice for exploring the effects of variations in those 

ratios: the lower bound, 1.05, is a commonly observed ratio; the upper bound, 1.45, is an arbitrarily high 

value chosen for exploratory purposes.  

 Results for the 81 combinations of fertility rates and m/f ratios are shown in Table 3. The effect 

of increasing the sex ratio at birth in favour of males is to reduce the rate of growth and increase the 

proportion of males (decrease the proportion of females) in the population, for any given fertility rate. 

With a fertility rate of 2.5 children per woman and an m/f ratio of 1.05 the population grows at a rate of 

.468 percent per year; if the m/f ratio is increased to 1.3, the growth rate falls to .179 percent, and if the 

ratio is allowed to increase further, to 1.45, the rate falls to only .021 percent, almost no growth at all. 

To put it differently, the natural replacement fertility rate – the rate required to produce a stationary 

population - is about 2.1 children per woman with the empirically common m/f ratio 1.05; with a very 

high ratio of 1.45 the natural replacement rate is about 2.5 children per woman. Very roughly (a “rule of 
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thumb” observation), for any given fertility rate, an increase of .05 in m/f lowers the rate of stable 

population growth by .05 to .06 percent per year as a consequence of the reduced proportion of 

females in the fertile Young Adult age group. 

 The decline in the proportion of males in the overall population ranges from 48.4 percent at one 

extreme (F = 1.0, m/f = 1.05) to 58.4 percent at the other (F = 5.0, m/f = 1.45). Another rough (“rule of 

thumb”) observation, similar to the one in the previous paragraph, is that, given any fertility rate, an 

increase of .05 in m/f produces an increase of .8 to 1.1 in the percentage of males.  

 

7. CONCLUSION 

 Alpha is a mythical country and the results of our simulations are theoretical. Underlying our 

presentation of the results is the idea that abortion can be used to alter the male/female distribution of 

births. There is much evidence to indicate that that is indeed the case among some families in some 

parts of the world – some countries of Southeast Asia, in particular, and among some emigrants from 

those countries.  But what has been observed – or rather inferred from census or birth registration data 

- is a far cry from the use of abortion on a scale wide enough to have the kinds of effects that our 

simulations generate at the population level. We think the results are of legitimate interest from a 

theoretical point of view but they are just that, theoretical.  

 We are accustomed to thinking of the sex ratio at birth as fixed for population projection 

purposes – virtually a parameter, in effect. One must of course project fertility and mortality rates but 

the value of the sex ratio is unchanging and can be taken as given. However that need not always be the 

case. There is evidence of systematic variation in the ratio over time in some countries and it may be 

necessary to allow for that in making projections; see for example the projections for China and India by 

Guilmoto (2010).   

The use of abortion as an instrument to implement male preference has been publicly 

condemned and in some countries prohibited, though with limited effect. Thinking about sex selection 

more broadly, could results such as those presented in this paper have a more realistic interpretation in 

the future? Technological development has provided highly effective methods of birth control that are 

in widespread use today, and which have had profound population implications. Could there be similar 

changes in the future that would make parental sex selection without abortion a realistic voluntary 

possibility on a large scale, with attendant effects on the population? There are procedures today that 

offer the possibility of sex selection (beyond the use of abortion) and their availability is advertised 

commercially (go to Google and type in “sex selection at birth”). But they are far from being widespread 

and inexpensively applicable. Can we expect that to change; will the population effects of sex selection 

take on more practical significance? We close this paper with the following suggestion by Keyfitz and 

Caswell (2005, p. 438) on what might happen if male preference were actually to bring about a 

significant shift in the sex ratio at birth: “Within a decade or so of the birth of a disproportionate 

number of boys couples would come to value girls more highly. Perhaps a series of waves would ensue, 

not unlike those familiar in a market economy … .” An interesting speculation.                   
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         Table 1. Probability Distributions and Related Statistics at the Family Level: Numbers of 
                          Births and Numbers of Male Births Under Alternative Stopping Rules  

Number of 
 births (n) 

Number of 
 males (m) 

______________Prob(n,m) under given stopping rule_______________ 
  S0   S1   S2   S3   S4   S5   S6   S7   S8 

        1         0      --    --    --    --    --    --    --    --    -- 
        1         1    -- .512    -- .512    --    --    --    --    -- 
        2         0    --    --    --    --    --    --    --     --    -- 
        2         1    -- .250    -- .250    --    --    --    --    -- 
        2         2    --    -- .262    -- .262 .262    --    --    -- 
        3         0 .116 .116    -- .013    --    --    --    --    -- 
        3         1 .366 .122    -- .224    --    --    --    --    -- 
        3         2 .384    -- .256    -- .256 .738    --    --    -- 
        3         3 .134    --    --    --    --    -- .134 .134    -- 
        4         0    --    -- .057    -- .007    --    --    --    -- 
        4         1    --    -- .238    -- .130    --    --    --    -- 
        4         2    --    -- .187    -- .345    --    --    --    -- 
        4         3    --    --    --    --    --    -- .866 .197    -- 
        4         4    --    --    --    --    --    --    --    -- .069 
        5         0    --    --    --    --    --    --    --    --    -- 
        5         1    --    --    --    --    --    --    --    --    -- 
        5         2    --    --    --    --    --    --    --    --    -- 
        5         3    --    --    --    --    --    --    -- .669    -- 
        5         4    --    --    --    --    --    --    --    -- .134 
        5         5    --    --    --    --    --    --    --    --    -- 
        6         0    --    --    --    --    --    --    --    --    -- 
        6         1    --    --    --    --    --    --    --    --    -- 
        6         2    --    --    --    --    --    --    --    --    -- 
        6         3    --    --    --    --    --    --    --    --    -- 
        6         4    --    --    --    --    --    --    --    -- .797 
                   E(n) 

     E(m) 
                    E(m)/E(n) 
                    m/f ratio 

3.000 1.726 3.219 1.726 3.219 2.738 3.866 4.535 5.728 
1.537 .884 1.649 .987 1.857 2.000 3.000 3.000 4.000 
.512 .512 .512 .572 .577 .731 .776 .662 .698 
1.050 1.050 1.050 1.335 1.362 2.711 3.466 1.955 2.315 

          
Note: In the absence of selective abortion a birth is assumed to be male with probability  
.5122. A double dash indicates an impossible n,m combination. 
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                   Table 2. Stable Alpha Populations Resulting from Alternative Stopping Rules 
 
 ________________________Stopping rule___________________________                                           
    S0     S1     S2   S3   S4   S5   S6   S7   S8  
Proportion male births (r)   .512    .512    .512    .572    .577    .731    .776    .662    .698 
Male/female ratio at birth 1.050  1.050  1.050  1.335  1.362  2.711  3.466  1.955  2.315 
Fertility rate (F) 2.550  1.467 2.736  1.467 2.736  2.327 3.286 3.855  4.869 
Annual % growth rate   .517   -.862   .695 -1.184    .339 -1.189  -.793    .637    .936 
          
Population age 
distribution 

         

     - children 29.2 18.6 30.7 16.5 27.8 16.7 19.5 30.4 32.9 
     - young adults 26.1 21.9 26.5 20.8 25.8 21.1 22.6 26.5 27.1 
     - middle aged 22.8 25.3 22.3 25.5 23.3 25.8 25.6 22.6 21.7 
     - retired 17.0 24.8 16.0 26.6 17.8 26.5 24.1 16.2 14.6 
     - old   4.9   9.4   4.5 10.6   5.2   9.9    8.1    4.3    3.6 
     - all ages 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
          
Proportion males          
     - children 51.2 51.2 51.2 57.1 57.6 73.0 77.6 66.1 69.8 
     - young adults 51.0 51.0 51.0 57.0 57.5 72.9 77.5 66.0 69.7 
     - middle aged 50.6 50.6 50.6 56.6 57.1 72.6 77.2 65.6 69.3 
     - retired 48.2 48.2 48.2 54.2 54.7 70.6 75.5 63.4 67.3 
     - old 38.7 38.7 38.7 44.5 45.0 62.0 67.6 54.1 58.2 
     - all ages 49.9 49.1 50.0 54.9 56.3 71.2 76.1 65.0 68.9 
          
Note: The proportion of women bearing no children is set at 15% for this table. 
 

  



13 
 

Table 3. Annual Rate of Growth and Proportion of Males in a Stable Alpha Population with Alternative   
Combinations of Fertility Rates and Male/Female Ratios at Birth 

 
                         ______________________________Fertility rate (F)_____________________________                                                       
Male/female 
ratio (r/(1-r))     

    1.0     1.5     2.0     2.5     3.0     3.5     4.0     4.5         5.0 

 ---------- rate of growth (%) ---------- 
      1.05  -1.808   -.807   -.091   .468   .927  1.316  1.655  1.955  2.224 
      1.10      -1.867   -.867   -.152   .407   .866  1.255  1.594  1.893   2.162 
      1.15  -1.925   -.925    -.210   .348   .806  1.196  1.534  1.833  2.102 
      1.20  -1.981   -.982   -.268   .290   .749  1.138  1.476  1.775  2.043 
      1.25  -2.036  -1.038   -.324   .234   .692  1.081  1.419  1.718  1.986 
      1.30  -2.090  -1.092   -.378   .179   .637  1.025  1.363  1.662  1.930 
      1.35  -2.142  -1.145   -.432   .125   .583    .971  1.309  1.607  1.875 
      1.40  -2.194  -1.197   -.484   .072   .530    .918  1.255  1.554  1.822 
      1.45  -2.244  -1.248   -.536   .021   .478    .866  1.203  1.501  1.769 
 ---------- proportion of males (%) ---------- 
      1.05    48.4    49.1    49.6    49.9    50.1    50.2    50.4    50.4    50.5 
      1.10    49.5    50.3    50.7    51.0    51.2    51.4    51.5    51.6    51.7 
      1.15    50.6    51.3    51.8    52.1    52.3    52.5    52.6    52.7    52.8 
      1.20    51.6    52.3    52.8    53.1    53.3    53.5    53.6    53.7    53.8 
      1.25    52.6    53.3    53.8    54.1    54.3    54.5    54.6    54.7    54.8 
      1.30    53.5    54.3    54.7    55.0    55.3    55.4    55.6    55.7    55.8 
      1.35    54.4    55.2    55.6    56.0    56.2    56.3    56.5    56.6    56.7 
      1.40    55.3    56.0    56.5    56.8    57.0    57.2    57.4    57.5    57.5 
      1.45    56.1    56.8    57.3    57.6    57.9    58.1    58.2    58.3    58.4 
          
 


