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1. Introduction

» Structural-equation models (SEMs) are multiple-equation regression
models in which the response variable in one regression equation can
appear as an explanatory variable in another equation.

e Two variables in a SEM can even effect one-another reciprocally, either
directly, or indirectly through a “feedback” loop.

» Structural-equation models can include variables that are not measured
directly, but rather indirectly through their effects (called indicators) or,
sometimes, through their observable causes.

e Unmeasured variables are variously termed latent variables, con-
structs, or factors.

» Modern structural-equation methods represent a confluence of work in
many disciplines, including biostatistics, econometrics, psychometrics,
and social statistics. The general synthesis of these various traditions
dates to the late 1960s and early 1970s.
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» This introduction to SEMs takes up several topics:
e The form and specification of observed-variables SEMs.

e Instrumental variables estimation.

e The “identification problem”. Determining whether or not a SEM, once
specified, can be estimated.

e Estimation of observed-variable SEMs.

e Structural-equation models with latent variables, measurement errors,
and multiple indicators.

» We will estimate SEMs using the sem package in R.
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2. Specification of Structural-Equation
Models

» Structural-equation models are multiple-equation regression models
representing putative causal (and hence structural) relationships among
a number of variables, some of which may affect one another mutually.
¢ Claiming that a relationship is causal based on observational data is
no less problematic in a SEM than it is in a single-equation regression
model.

e Such a claim is intrinsically problematic and requires support beyond
the data at hand.

e SEMs, however, allow one to check the consistency of a specified
model with the data and to estimate causal effects assuming the
correctness of the model.
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» Several classes of variables appears in SEMs:
e Endogenous variables are the response variables of the model.
— There is one structural equation (regression equation) for each
endogenous variable.

— An endogenous variable may, however, also appear as an explana-
tory variable in other structural equations.

— For the kinds of models that we will consider, the endogenous
variables are (as in the single-equation linear model) quantitative
continuous variables.

e Exogenous variables appear only as explanatory variables in the
structural equations.
— The values of exogenous variable are therefore determined outside
of the model (hence the term).

— Like the explanatory variables in a linear model, exogenous variables
are assumed to be measured without error (but see the later
discussion of latent-variable models).
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— Exogenous variables can be categorical (represented, as in a linear
model, by dummy regressors or other sorts of contrasts).

e Structural errors (or disturbances) represent the aggregated omitted
causes of the endogenous variables, along with measurement error
(and possibly intrinsic randomness) in the endogenous variables.

— There is one error variable for each endogenous variable (and hence
for each structural equation).

— The errors are assumed to have zero expectations and to be
independent of (or at least uncorrelated with) the exogenous
variables.

— The errors for different observations are assumed to be independent
of one another, but (depending upon the form of the model) different
errors for the same observation may be related.
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— Each error variable is assumed to have constant variance across
observations, although different error variables generally will have
different variances (and indeed different units of measurement —
the square units of the corresponding endogenous variables).

— As in linear models, we will sometimes assume that the errors are
normally distributed.

» | will use the following notation for writing down SEMs:
e Endogenous variables: v, y

e Exogenous variables: z;, x
e Errors: ¢, ey
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e Structural coefficients (i.e., regression coefficients) representing the
direct (partial) effect
— of an exogenous on an endogenous variable, z; on y;: v, (gamma).
- Note that the subscript of the response variable comes first.

— of an endogenous variable on another endogenous variable, y;- on

e Covariances between
— two exogenous variables, z; and z;: o

— two error variables, ¢; and ¢j: o
¢ \When we require them, other covariances are represented similarly.

» Variances will be written either as o7 or as ¢ ; (i.e., the covariance of a
variable with itself), as is convenient.
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» An intuitively appealing way of representing a SEM is in the form of
a causal graph, called a path diagram. An example, from Duncan,
Haller, and Portes’s (1968) study of peer influences on the aspirations of
high-school students, appears in Figure 1.

» The following conventions are used in the path diagram:
e A directed (single-headed) arrow represents a direct effect of one
variable on another; each such arrow is labelled with a structural
coefficient.

¢ A bidirectional (two-headed) arrow represents a covariance, between
exogenous variables or between errors, that is not given causal
interpretation.

e | give each variable in the model (z, vy , and ¢) a unique subscript; | find
that this helps to keep track of variables and coefficients.
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Figure 1. Duncan, Haller, and Portes’s (nonrecursive) peer-influences
model: x, respondent’s 1Q; x,, respondent’s family SES; x5, best friend’s
family SES; z,, best friend’s 1Q; 5, respondent’s occupational aspiration;
ys, best friend’s occupational aspiration. So as not to clutter the diagram,
only one exogenous covariance, oy, is shown.
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» When two variables are not linked by a directed arrow it does not
necessarily mean that one does not affect the other:
e For example, in the Duncan, Haller, and Portes model, respondent’s
IQ (x1) can affect best friend’s occupational aspiration (yg), but only
indirectly, through respondent’s aspiration (ys).

e The absence of a directed arrow between respondent’s 1Q and best
friend’s aspiration means that there is no partial relationship between
the two variables when the direct causes of best friend’s aspiration are
held constant.

e In general, indirect effects can be identified with “compound paths”
through the path diagram.

e The model can also account for “non-causal’ sources of covariation.
— E.g., part of the relationship between z; and y; is due to the
correlation of x; with x4, which is a direct cause of ;.
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» The structural equations of a model can be read straightforwardly from
the path diagram.
e For example, for the Duncan, Haller, and Portes peer-influences
model:

Ysi = Vs0 T V5171 t+ VsoT2i + BaeYei + €7
Yoi = Yoo T Ve3T3i + VeaZai + BosYsi + Esi
e 'll usually simplify the structural equations by
(i) suppressing the subscript i for observation;
(ii) expressing all zs and y s as deviations from their populations means
(and, later, from their means in the sample).

e Putting variables in mean-deviation form gets rid of the constant terms
(here, 5, and ,) from the structural equations (which are rarely of
interest), and will simplify some algebra later on.
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e Applying these simplifications to the peer-influences model:
Ys = V511 + V52 + Bselo + £7
Yo = Vo33 + VeaTa + Besys + €5
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» It is sometimes helpful (e.g., for generality) to cast a structural-equation
model in matrix form.
» To illustrate, I'll begin by rewriting the Duncan, Haller and Portes model,
shifting all observed variables (i.e., with the exception of the errors)
to the left-hand side of the model, and showing all variables explicitly;
variables missing from an equation therefore get 0 coefficients, while the
response variable in each equation is shown with a coefficient of 1:
1ys — Bs6¥6 — V5101 — V5202 + 023 + 0zy = £7
—Besys + 1ys + 021 + 029 — Y373 — YeuTa = Es
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» Collecting the endogenous variables, exogenous variables, errors, and
coefficients into vectors and matrices, we can write
X1

l 1 —556] [%] n [—%1 —V52 0 0 ] Ty | _ l*??]
—Be; 1 Ye 0 0 =73 —Yeu T3 €8
Ty

» More generally, where there are ¢ endogenous variables (and hence
q errors) and m exogenous variables, the model for an individual
observation is

By + T x5 = ¢
(@Xq)(gx1)  (axm)(mx1)  (gx1)

e The B and I matrices of structural coefficients typically contain some
0 elements, and the diagonal entries of the B matrix are 1s.
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» We can also write the model for all n observations in the sample:
Y B+ X I' = E

(nxq)(gxq)  (nxm)(mxq)  (nxq)

¢ | have transposed the structural-coefficient matrices B and I, writing
each structural equation as a column (rather than as a row), so that
each observation comprises a row of the matrices Y, X, and E of
endogenous variables, exogenous variables, and errors.
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» An important type of SEM, called a recursive model, has two defining
characteristics:
(a) Different error variables are independent (or, at least, uncorrelated).

(b) Causation in the model is unidirectional: There are no reciprocal
paths or feedback loops, as shown in Figure 2.

» Put another way, the B matrix for a recursive SEM is lower-triangular,
while the error-covariance matrix X.. is diagonal.
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reciprocal a feedback
paths loop

Figure 2. Reciprocal paths and feedback loops cannot appear in a recur-
sive model.
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» An illustrative recursive model, from Blau and Duncan’s seminal
monograph, The American Occupational Structure (1967), appears in
Figure 3.

e For the Blau and Duncan model:
[ 1 0 0

B= |65 1 0

_—553 —554 1
(02 0 0
S.=|0020
00 o2

» Sometimes the requirements for unidirectional causation and indepen-
dent errors are met by subsets (“blocks”) of endogenous variables and
their associated errors rather than by the individual variables. Such a
model is called block recursive.

» An illustrative block-recursive model for the Duncan, Haller, and Portes
peer-influences data is shown in Figure 4.
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Figure 3. Blau and Duncan’s “basic stratification” model: z, father’s edu-
cation; x4, father's occupational status; y3, respondent’s (son’s) education;
y4, respondent’s first-job status; y;, respondent’s present (1962) occupa-

tional status.
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Figure 4. An extended, block-recursive model for Duncan, Haller, and
Portes’s peer-influences data: z,, respondent’s IQ; x5, respondent’s family
SES; z3, best friend’s family SES; x4, best friend’'s 1Q; y;, respondent’s
occupational aspiration; y;, best friend’s occupational aspiration; y;, re-
spondent’s educational aspiration; ys, best friend’s educational aspiration.
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» A model that is neither recursive nor block-recursive (such as the model
for Duncan, Haller and Portes’s data in Figure 1) is termed nonrecursive.
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3. Instrumental-Variables Estimation

» Instrumental-variables (IV) estimation is a method of deriving estimators
that is useful for understanding whether estimation of a structural
equation model is possible (the “identification problem”) and for obtaining
estimates of structural parameters when it is.
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» It is helpful first to review expectations, variances, and covariances of
random variables:

e The expectation (or mean) of a random variable X is the average
value of the variable that would be obtained over a very large number
of repetitions of the process that generates the variable:

— For a discrete random variable X,
E(X) =pyx = pr(x)
all x
where z is a value of the random variable and p(z) = Pr(X = z).
— I'm careful here (as usually | am not) to distinguish the random
variable (X') from a value of the random variable (x).
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— For a continuous random variable X,

+o0
BOX) =y = [ aplais
where now p(z) is the probability-density function of X evaluated at

X.

e Likewise, the variance of a random variable is
—in the discrete case

Var(X) = o% = ) (2 — px)’p(x)

all
— and in the continuous case .
Var(X) = o = (z — px)’p(z)da
-0

— In both cases
Var(X) = E [(X — p1)?]
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— The standard deviation of a random variable is the square-root of the
variance:

SD(X) =0x = +4/0%

e The covariance of two random variables X and Y is a measure of their
linear relationship; again, a single formula suffices for the discrete and
continuous case:

Cov(X,Y) =oxy = E[(X — pux)(Y — py)]
— The correlation of two random variables is defined in terms of their
covariance:

oxy
Cor(X,Y) = pyy = JE—
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» To understand the IV approach to estimation, consider first the following
route to the ordinary-least-squares (OLS) estimator of the simple-
regression model,

y=pPr+e¢
where the variables = and y are in mean-deviation form, eliminating the
regression constant from the model; that is, £(y) = E(z) = 0.
e By the usual assumptions of this model, E(¢) = 0; Var(¢) = ¢ and
x, e are independent.
e Now multiply both sides of the model by = and take expectations:
zy = P’ + xe
E(xy) = BE(2?) + E(xe)
Cov(z,y) = [SVar(z) + Cov(xe)
Oy = Bo% 40
where Cov(ze) = 0 because x and ¢ are independent.
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e Solving for the regression coefficient [,
g Tn
o2
e Of course, we don’t know the population covariance of = and y, nor
do we know the population variance of z, but we can estimate both of
these parameters consistently:

2 = >(zi — )

* n—1
D >
Y n—1

In these formulas, the variables are expressed in raw-score form, and
so | show the subtraction of the sample means explicitly.

e A consistent estimator of 3 is then

b S _ Y@= D~ )
57 > (x; —T)?
which we recognize as the OLS estimator.
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» Imagine, alternatively, that = and < are not independent, but that ¢ is
independent of some other variable 2.
e Suppose further that z and z are correlated — that is, Cov(z, z) # 0.

e Then, proceeding as before, but multiplying through by z rather than
by x (with all variable expressed as deviations from their expectations):
zy = Pzx + z¢e
E(zy) = BE(zx) + E(z¢)
Cov(z,y) = pCov(z,x) + Cov(ze)

Ozy = ﬁazm +0
Oy
B - Oy

where Cov(ze) = 0 because z and ¢ are independent.

e Substituting sample for population covariances gives the instrumental
variables estimator of 3:

S _ 2z =2 =)

by = — = — —
Szu E(zz - Z)(xl - IE)
1QS Barcelona Copyright © 2016 by John Fox
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— The variable z is called an instrumental variable (or, simply, an

instrument).

— by is a consistent estimator of the population slope 3, because the
sample covariances s., and s, are consistent estimators of the
corresponding population covariances o, and o .
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» The generalization to multiple-regression models is straightforward.
e For example, for a model with two explanatory variables,
y=01r1+ Byma t¢
(with z1, x5, and y all expressed as deviations from their expectations).
e If we can assume that the error < is independent of x; and x,, then we
can derive the population analog of estimating equations by multiplying
through by the two explanatory variables in turn, obtaining

E(x1y) = B1E(27) + BoE(175) + E(x12)
E(xoy) = B1E(x172) + BoE(23) + E(x2¢)

2
Oy = 510-1'1 + 520-331332 +0
B p
Oxyy = 510—21?1362 + 520-.1:2 +0
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— Substituting sample for population variances and covariances
produces the OLS estimating (“normal”) equations:

Spy = blsil + 02541,
S:E2y — b18x1w2 + b28§,2
¢ Alternatively, if we cannot assume that ¢ is independent of the xs, but

can assume that ¢ is independent of two other variables, z; and 2,
then

E(z1y) = B1E(z111) + BoE(z112) + E(21€)
E(zy) = B1E(2011) + BoE(29m2) + E(22¢)

O-Zly = 610-21351 + 62021@ + 0
Oy = 510-,223:1 + 520-,221’2 +0
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e the IV estimating equations are obtained by the now familiar step
of substituting consistent sample estimators for the population
covariances:

Say = blszlxl + 625,21:52
Srny = b1822x1 + b25z2x2

e For the IV estimating equations to have a unique solution, it's
necessary that there not be an analog of perfect collinearity.

— For example, neither z; nor x5 can be uncorrelated with both z; and
z9.

» Good instrumental variables, while remaining uncorrelated with the
error, should be as correlated as possible with the explanatory variables.
e In this context, ‘good’ means yielding relatively small coefficient

standard errors (i.e., producing efficient estimates).
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e OLS is a special case of |V estimation, where the instruments and the
explanatory variables are one and the same.

— When the explanatory variables are uncorrelated with the error, the
explanatory variables are their own best instruments, since they are
perfectly correlated with themselves.

— Indeed, the Gauss-Markov theorem insures that when it is applicable,
the OLS estimator is the best (i.e., minimum variance or most
efficient) linear unbiased estimator (BLUE).
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» Our object is to estimate the model

y = X B + ¢
(nx1) (n><kf+1)(k+1x1) (nx1)

where € ~ N,(0,0%1L,).
e Of course, if X and ¢ are independent, then we can use the OLS
estimator
boLs = (X’X)‘IX’y
with estimated covariaAnce matrix
V(boLs) = sprs(X'X)™!

where )
2 . — foLsoLs
OLS n—rk—1
for
eors =y — Xbgs
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» Suppose, however, that we cannot assume that X and ¢ are indepen-
dent, but that we have observations on &k + 1 instrumental variables,

Z |, that are independent of .
(nxk+1)

e For greater generality, | have not put the variables in mean-deviation
form, and so the model includes a constant; the matrices X and Z
therefore each include an initial column of ones.

¢ A development that parallels the previous scalar treatment leads to the
IV estimator
by = (Z/X)_lzly
with estimated covariance matrix
V(by) = sp(Z'X) ' 2/ Z(X'Z) !

where )

5|2V _ €\veiv

n—k—1

for

ey =y — Xby
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e Since the results for IV estimation are asymptotic, we could also
estimate the error variance with n rather than n — &£ — 1 in the
denominator, but dividing by degrees of freedom produces a larger
variance estimate and hence is conservative.

e For byy to be unigue Z'X must be nonsingular (just as X’X must be
nonsingular for the OLS estimator).

e If Z = X, IV estimation is OLS estimation.
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4. The ldentification Problem

» If a parameter in a structural-equation model can be estimated then the
parameter is said to be identified; otherwise, it is underidentified (or
unidentified).

o If all of the parameters in a structural equation are identified, then so
is the equation.

e If all of the equations in a SEM are identified, then so is the model.

e Structural equations and models that are not identified are also termed
underidentified.

» If only one estimate of a parameter is available, then the parameter is
just-identified or exactly identified.

» If more than one estimate is available, then the parameter is overidenti-
fied.
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» The same terminology extends to structural equations and to models:
An identified structural equation or SEM with one or more overidentified
parameters is itself overidentified.

» Establishing whether a SEM is identified is called the identification
problem.
e |dentification is usually established one structural equation at a time.
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» Using instrumental variables, we can derive a necessary (but, as it turns
out, not sufficient) condition for identification of nonrecursive models
called the order condition.

e Because the order condition is not sufficient to establish identification,
it is possible (though rarely the case) that a model can meet the order
condition but not be identified.

e There is a necessary and sufficient condition for identification called
the rank condition, which | will not develop here.
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e The terms “order condition” and “rank condition” derive from the
order (number of rows and columns) and rank (number of linearly
independent rows and columns) of a matrix that can be formulated
during the process of identifying a structural equation. We will not
pursue this approach.

e Both the order and rank conditions apply to nonrecursive models
without restrictions on disturbance covariances.
— Such restrictions can sometimes serve to identify a model that would
not otherwise be identified.

— More general approaches are required to establish the identification
of models with disturbance-covariance restrictions.

— We will, however, use the IV approach to consider the identification of
two classes of models with restrictions on disturbance covariances:
recursive and block-recursive models.
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» The order condition is best developed from an example.

e Recall the Duncan, Haller, and Portes peer-influences model, repro-
duced in Figure 5.

e Let us focus on the first of the two structural equations of the model,

Ys = V121 + V52 + B56Y6 + €7
where all variables are expressed as deviations from their expecta-
tions.
— There are three structural parameters to estimate in this equation,
Y51, Va2, @Nd Bsg.

e It would be inappropriate to perform OLS regression of y; on xq,
X2, and y; to estimate this equation, because we cannot reasonably
assume that the endogenous explanatory variable y; is uncorrelated
with the error «7.

— 7 may be correlated with g, which is one of the components of y; .

— g7 is @ component of y; which is a cause (as well as an effect) of ;.
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& %1\> «—
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Figure 5. Duncan, Haller, and Portes nonrecursive peer-influences model
(repeated).
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e This conclusion is more general: \We cannot assume that endogenous
explanatory variables are uncorrelated with the error of a structural
equation.
— As we will see, however, we will be able to make this assumption in
recursive models.

¢ Nevertheless, we can use the four exogenous variables x4, 29, x3, and
x4, as instrumental variables to obtaining estimating equations for the
structural equation:
— For example, multiplying through the structural equation by z; and
taking expectations produces

T1Ys = V5127 + V512 + Bag1ye + 1167
E(z1y5) = 751 B(2]) + 150 B(2122) + By E(x1y6) + E(z127)
o5 = 7510% + V52012 + Bsgo16 + 0
since 017 = E(1167) = 0.
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4

— Applying all four exogenous variables,

v

Equation

T
)
T3
Ty

015 = V5101 + V52012 + B56016
095 = V51012 + V5205 + B56026
035 = V51013 + V52023 + B56036
045 = V51014 + V52024 + B56046

- If the model is correct, then all of these equations, involving
population variances, covariances, and structural parameters, hold
simultaneously and exactly.

- If we had access to the population variances and covariances,
then, we could solve for the structural coefficients 75, V55, and Bs
even though there are four equations and only three parameters.

- Since the four equations hold simultaneously, we could obtain the
solution by eliminating any one and solving the remaining three.

1QS Barcelona
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e Translating from population to sample produces four IV estimating
equations for the three structural parameters:

$15 = Y5157 + V2812 + ésﬁslﬁ
S35 = Y1512 + Va5 + Bs6526
535 = 751513 + V52523 + §56836
545 = Y5514 + V52524 + BreSas

— The s’s and s;;s are sample variances and covariances that can

be calculated directly from sample data, while 7;;, 75,, and 356 are
estimates of the structural parameters, for which we want to solve
the estimating equations.

— There is a problem, however: The four estimating equations in the
three unknown parameter estimates will not hold precisely:
- Because of sampling variation, there will be no set of estimates
that simultaneously satisfies the four estimating equations.

1QS Barcelona
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- That is, the four estimating equations in three unknown parameters
are overdetermined.

— Under these circumstances, the three parameters and the structural
equation are said to be overidentified.

e It is important to appreciate the nature of the problem here:

— We have foo much rather than too little information.

— We could simply throw away one of the four estimating equations and
solve the remaining three for consistent estimates of the structural
parameters.

— The estimates that we would obtain would depend, however, on
which estimating equation was discarded.

— Moreover, throwing away an estimating equation, while yielding
consistent estimates, discards information that could be used to
improve the efficiency of estimation.
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» Time Permitting: To illuminate the nature of overidentification, consider
the following, even simpler, example:
¢ \\le want to estimate the structural equation
Ys = V101 + Bsaya + €6
and have available as instruments the exogenous variables x4, x5, and
xs3.
e Then, in the population, the following three equations hold simultane-
ously:
IV | Equation
T1| 015 = V5107 + B54014
T2 | 025 = V51012 + 5024
T3| 035 = V51013 + 51034
e These linear equations in the parameters 5, and 3, are illustrated in
Figure 6 (a), which is constructed assuming particular values for the
population variances and covariances in the equations.
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e The important aspect of this illustration is that the three equations
intersect at a single point, determining the structural parameters,

which are the solution to the equations.
e The three estimating equations are R
S15 = Y5151 + 5/54514
825 = V1812 T P45
835 = 51513 + B54531
e As illustrated in Figure 6 (b), because the sample variances and
covariances are not exactly equal to the corresponding population
values, the estimating equations do not in general intersect at a
common point, and therefore have no solution.

¢ Discarding an estimating equation, however, produces a solution,
since each pair of lines intersects at a point.
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Figure 6. Population equations (a) and corresponding estimating equa-
tions (b) for an overidentified structural equation with two parameters and
three estimating equations. The population equations have a solution for
the parameters, but the estimating equations do not.
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» Let us return to the Duncan, Haller, and Portes model, and add a path
from x3 to y5, so that the first structural equation becomes
Ys = V1 T1 + V52 + V5323 + BseYe + €7
e There are now four parameters to estimate (vs;, 752, V53, @and [x;), and
four IVs (x4, zo, x3, and x,), which produces four estimating equations.

¢ With as many estimating equations as unknown structural parameters,
there is only one way of estimating the parameters, which are therefore
Just identified.

e \\e can think of this situation as a kind of balance sheet with Vs as
“‘credits” and structural parameters as “debits.”
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— For a just-identified structural equation, the numbers of credits and
debits are the same:

Credits| Debits
IVs | parameters
T V51
4%) V52
T3 V53
Ly Bs6

4 4
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¢ In the original specification of the Duncan, Haller, and Portes model,
there were only three parameters in the first structural equation,
producing a surplus of IVs, and an overidentified structural equation:

Credits| Debits
IVs | parameters
T V51
T2 V52
T3 556
Ty

4 3
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» Now let us add still another path to the model, from z, to y;, so that the

first structural equation becomes

Ys = V5171 + V522 + Vs3T5 + V5u®a + BrgYs + €7
e Now there are fewer IVs available than parameters to estimate in the
structural equation, and so the equation is underidentified-

Credits| Debits
IVs | parameters
I V51
T2 V52
T3 V53
Ty V54

Bs6
4 5

e That is, we have only four estimating equations for five unknown
parameters, producing an underdetermined system of estimating

equations.
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4.1.1 Order Condition

» From these examples, we can abstract the order condition for identifica-
tion of a structural equation: For the structural equation to be identified,
we need at least as many exogenous variables (instrumental variables)
as there are parameters to estimate in the equation.

e Since structural equation models have more than one endogenous
variable, the order condition implies that some potential explanatory
variables must be excluded apriori from each structural equation of
the model for the model to be identified.

e Put another way, for each endogenous explanatory variable in a
structural equation, at least one exogenous variable must be excluded
from the equation.
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e Suppose that there are m exogenous variable in the model:
— A structural equation with fewer than m structural parameters is
overidentified.

— A structural equation with exactly m structural parameters is just-
identified.

— A structural equation with more than m structural parameters is
underidentified, and cannot be estimated.
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» The pool of Vs for estimating a structural equation in a recursive
model includes not only the exogenous variables but prior endogenous
variables as well.

e Because the explanatory variables in a structural equation are drawn
from among the exogenous and prior endogenous variables, there will
always be at least as many IVs as there are explanatory variables (i.e.,
structural parameters to estimate).

e Consequently, structural equations in a recursive model are necessar-
ily identified.

» Time Permitting: To understand this result, consider the Blau and
Duncan basic-stratification model, reproduced in Figure 7.
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> y4
Y42
87

Figure 7. Blau and Duncan’s recursive basic-stratification model (re-
peated).
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e The first structural equation of the model is
Y3 = Y3171 + Y3272 + €6

with “balance sheet”
Credits Debits

IVs | parameters

I Y31
€2 V32
2 2

— Because there are equal numbers of IVs and structural parameters,
the first structural equation is just-identified.
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— More generally, the first structural equation in a recursive model can

have only exogenous explanatory variables (or it wouldn'’t be the first
equation).

- If all the exogenous variables appear as explanatory variables (as
in the Blau and Duncan model), then the first structural equation is
just-identified.

- If any exogenous variables are excluded as explanatory variables
from the first structural equation, then the equation is overidentified.

e The second structural equation in the Blau and Duncan model is
Y1 = Va2 + Bugys + €7

— As before, the exogenous variable x; and z, can serve as IVs.

— The prior endogenous variable y; can also serve as an |V, because
(according to the first structural equation), 3 is a linear combination
of variables (z1, z2, and ¢¢) that are all uncorrelated with the error
g7 (r1and zo because they are exogenous, ¢; because it is another
error variable).
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— The balance sheet is therefore

Credits| Debits
IVs | parameters
L1 Va2
T Bus
Y3
3 2
— Because there is a surplus of Vs, the second structural equation is

overidentified.

— More generally, the second structural equation in a recursive model
can have only the exogenous variables and the first (i.e., prior)
endogenous variable as explanatory variables.
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- All of these predetermined variables are also eligible to serve as
IVs.

- If all of the predetermined variables appear as explanatory
variables, then the second structural equation is just-identified; if
any are excluded, the equation is overidentified.

e The situation with respect to the third structural equation is similar:
Ys = V52 + Bsgys + Prays + €5
— Here, the eligible instrumental variables include (as always) the
exogenous variables (x1, x») and the two prior endogenous variables:

- y3 because it is a linear combination of exogenous variables (z;
and x,) and an error variable (¢¢), all of which are uncorrelated with
the error from the third equation, es.

- 14 because it is a linear combination of variables (z», y3, and e; —
as specified in the second structural equation), which are also all
uncorrelated with eg.
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— The balance sheet for the third structural equation indicates that the
equation is overidentified:

Credits| Debits

IVs | parameters

1 V52

) Bss

Y3 B4

Y

4 3
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e More generally:
— All prior variables, including exogenous and prior endogenous
variables, are eligible as Vs for estimating a structural equation in a
recursive model.

— If all of these prior variables also appear as explanatory variables in
the structural equation, then the equation is just-identified.

— If, alternatively, one or more prior variables are excluded, then the
equation is overidentified.

— A structural equation in a recursive model cannot be underidentified.
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» A slight complication: There may only be a partial ordering of the
endogenous variables.
e Consider, for example, the model in Figure 8.
— This is a version of Blau and Duncan’s model in which the path from
y3 to y4 has been removed.

— As a consequence, ys is no longer prior to y, in the model — indeed,
the two variables are unordered.

— Because the errors associated with these endogenous variables, ¢
and ¢, are uncorrelated with each other, however, y; is still available
for use as an IV in estimating the equation for /.

— Moreover, now y, is also available for use as an IV in estimating the
equation for ys3, so the situation with respect to identification has, if
anything, improved.
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\

€7

Figure 8. A recursive model (a modification of Blau and Duncan’s model) in
which there are two endogenous variables, y3 and y,, that are not ordered.
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» In a block-recursive model, all exogenous variables and endogenous
variables in prior blocks are available for use as IVs in estimating the
structural equations in a particular block.

e A structural equation in a block-recursive model may therefore be
under-, just-, or overidentified, depending upon whether there are
fewer, the same number as, or more Vs than parameters.

e For example, recall the block-recursive model for Duncan, Haller, and

Portes’s peer-influences data, reproduced in Figure 9.

— There are four Vs available to estimate the structural equations in
the first block (for endogenous variables y; and y3) — the exogenous
variables (x1, x9, x3, and xy).

- Because each of these structural equations has four parameters to
estimate, each equation is just-identified.
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10

Figure 9. Block-recursive model for Duncan, Hallter and Portes’s peer-in-
fluences data (repeated).
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— There are six |Vs available to estimate the structural equations in
the second block (for endogenous variables y; and ys) — the four
exogenous variables plus the two endogenous variables (y; and y5)
from the first block.

- Because each structural equation in the second block has five
structural parameters to estimate, each equation is overidentified.

- Inthe absence of the block-recursive restrictions on the disturbance
covariances, only the exogenous variables would be available as
IVs to estimate the structural equations in the second block, and
these equations would consequently be underidentified.
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5. Estimation of Structural-Equation Models

» There are two general and many specific approaches to estimating
SEMs:
(a) Single-equation or limited-information methods estimate each struc-
tural equation individually.
— | will describe a single-equation method called two-stage least
squares (2SLS).

— Unlike OLS, which is also a limited-information method, 2SLS
produces consistent estimates in nonrecursive SEMs.

— Unlike direct IV estimation, 2SLS handles overidentified structural
equations in a non-arbitrary manner.
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— 2SLS also has a reasonable intuitive basis and appears to perform
well — it is generally considered the best of the limited-information
methods.

(b) Systems or full-information methods estimate all of the parameters
in the structural-equation model simultaneously, including error
variances and covariances.

— | will briefly describe a method called full-information maximum-
likelihood (FIML).

— Full information methods are asymptotically more efficient than
single-equation methods, although in a model with a misspecified
equation, they tend to proliferate the specification error throughout
the model.

— FIML appears to be the best of the full-information methods.

» Both 2SLS and FIML are implemented in the sem package for R.
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» A Note on Terminology: FIML is often called just “ML’ in recent SEM
literature and software, with the term “FIML’ reserved for ML estimation
in the presence of missing data.
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5.1.1 Two-Stage Least Squares
» Underidentified structural equations cannot be estimated.

» Just-identified equations can be estimated by direct application of the
available IVs.
¢ \Ve have as many estimating equations as unknown parameters.

» For an overidentified structural equation, we have more than enough
IVs.
e There is a surplus of estimating equations which, in general, are not
satisfied by a common solution.

e 2SLS is a method for reducing the IVs to just the right number — but
by combining 1Vs rather than discarding some altogether.
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» Recall the first structural equation from Duncan, Haller, and Portes’s
peer-influences model:
Y5 = V5171 + VsaTa + BseYo + €7
e This equation is overidentified because there are four IVs available
(z1, x9, x3, and x4) but only three structural parameters to estimate

(Y51, V52, @nd Bs).

e An IV must be correlated with the explanatory variables but uncorre-
lated with the error.

e A good IV must be as correlated as possible with the explanatory
variables, to produce estimated structural coefficients with small
standard errors.

e 2SLS chooses IVs by examining each explanatory variable in turn:
— The exogenous explanatory variables z; and x, are their own best
instruments because each is perfectly correlated with itself.
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— To get a best IV for the endogenous explanatory variable ys, we first
regress this variable on all of the exogenous variables (by OLS),

according to the reduced-form model
Yo = Te1T1 + TeaT + Te303 + MeaTy + O
producing fitted values
Yo = 6121 + TeaT2 + Te3T3 + T4y
— Because 75 is a linear combination of the xs — indeed, the linear
combination most highly correlated with y; — it is (asymptotically)
uncorrelated with the structural error ;.
— This is the first stage of 2SLS.

e Now we have just the right number of IVs: z;, 25, and ¥, pro-
ducing three estimating equations for the three unknown structural

parameters:
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IV | 2SLS Estimating Equation
1| 515 = 5157 + VsaS12 T B3e516
@ | S35 = V5112 + V5283 + Bi520
Yo | 555 = V51515 T Va2 + DoSes

where, e.g., s.; is the sample covariance between y; and ;.

» The generalization of 2SLS from this example is straightforward:
e Stage 1. Regress each of the endogenous explanatory variables in
a structural equation on all of the exogenous variables in the model,
obtaining fitted values.

e Stage 2: Use the fitted endogenous explanatory variables from stage
1 along with the exogenous explanatory variables as IVs to estimate
the structural equation.

» If a structural equation is just-identified, then the 2SLS estimates are
identical to those produced by direct application of the exogenous
variables as IVs.
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» There is an alternative route to the 2SLS estimator which, in the second
stage, replaces each endogenous explanatory variable in the structural
equation with the fitted values from the first stage regression, and then

performs an OLS regression.
e The second-stage OLS regression produces the same estimates as

the IV approach.
e The name “two-stage least squares” originates from this alternative

approach.
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5.1.2 2SLS Estimation in Matrix Form (Time Permitting)

» The 2SLS estimator for the jth structural equation in a nonrecursive
model can be formulated in matrix form as follows:
o \Write the jth structural equation as
ijYj,Bj-i-Xj ’Yj+€j
(nx1) (nxq;)(gjx1)  (nxm;)(m;x1)  (nx1)
6-]
= Y, X, Il +e;
[ J J] l'Y" J

J
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where
y; is the response-variable vector in structural equation j

Y; is the matrix of ¢; endogenous explanatory variables in equation j

B, is the vector of structural parameters for the endogenous
explanatory variables

X is the matrix of m; exogenous explanatory variables in equation j,
normally including a column of 1s for the regression constant

~; is the vector of structural parameters for the exogenous explanatory
variables

€; is the error vector for structural equation j

e In the first stage of 2SLS, the endogenous explanatory variables are
regressed on all m exogenous variables X in the model, obtaining the
OLS estimates of the reduced-form regression coefficients

P, = (X'X)'X'Y,
and fitted values
Y, = XP, = X(X'X)"'X'Y;
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¢ In the second stage of 2SLS, we apply X; and ?j as instruments to
the structural equation to obtain (after quite a bit of manipulation)

{5}-] _ lY;X(X'X)_lX’Yj Y;Xj]‘l [Y;X(X’X)‘lxyj
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e The estimated variance-covariance matrix of the 2SLS estimates is
3 —1
v ij ] e lYﬁ'X(X/X) X'Y; YX;
v '

/! /
: XY, X'X;
where
/ .
2 €€
s, = ————
Ton—=gi—my
ej =y~ Y;B8;— X5,
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5.1.3 Full-Information Maximum Likelihood

» Along with the other standard assumptions of SEMs, FIML estimates
are calculated under the assumption that the structural errors are
multivariately normally distributed.

» Under this assumption, the log-likelihood for the model is
log, L(B,T',X_.) = nlog, |det(B)| — % log, 27 — gloge det(X..)

1 n
5 Z (By+I'x;) ' (By;+Tx,)
i1

where det represents the determinant.
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e The FIML estimates are the values of the parameters that maximize
the likelihood under the constraints placed on the model — for example,
that certain entries of B, I'', and (possibly) X.. are 0.

e Estimated variances and covariances for the parameters are obtained
from the inverse of the information matrix — the negative of the
Hessian matrix of second-order partial derivatives of the log-likelihood
— evaluated at the parameter estimates.

e The full general machinery of maximum-likelihood estimation is
available — for example, alternative nested models can be compared
by a likelihood-ratio test.
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5.1.4 Estimation Using the sem Package in R

» The tsls function in the sem package is used to estimate structural
equations by 2SLS.
e The function works much like the 1m function for fitting linear models
by OLS, except that instrumental variables are specified in the
instruments argument as a “one-sided” formula.

e For example, to fit the first equation in the Duncan, Haller, and Portes
model, we would specify something like

egn.l <- tsls(ROccAsp ~ RIQ + RSES + FOccAsp,
instruments= ~ RIQ + RSES + FSES + FIQ, data=DHP)
summary (egn.1)
— This assumes that we have Duncan, Haller, and Portes’s data in the
data frame DHP, which is not the case.
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» The sem function may be used to fit a wide variety of models — including
observed-variable nonrecursive models — by FIML.
¢ This function takes three required arguments:
—model: A coded formulation of the model, described below.

— S The covariance matrix among the observed variables in the
model; may be in upper- or lower-triangular form as well as the full,
symmetric matrix.

— N: The number of observations on which the covariance matrix is
based.

¢ Alternatively, and preferably, the data argument may be used in place
of s and N to provide a data set from which covariances (or other
moments) are computed (but | don’t have the original Duncan, Haller,
and Portes data set).

¢ In addition, for an observed-variable model, the argument fixed.x
should be set to the names of the exogenous variables in the model.
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e The model is coded using an approach, due originally to McArdle, to
specifying and estimating SEMs (called a “recticular action model” or
“‘RAM”):

— Each structural coefficient of the model is represented as a directed
arrow -> in the model argument to sem.

— Each error variance and covariance is represented as a bidirectional
arrow, <->.

¢ To write out the model in this form, it helps to redraw the path diagram,
as in Figure 10 for the Duncan, Haller, and Portes model.
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Figure 10. Modified path diagram for the Duncan, Haller, and Portes
model, omitting covariances among exogenous variables, and showing er-
ror variances and covariances as double arrows attached to the endoge-
nous variables.
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e Then the model can be encoded as follows, specifying each arrow,
and giving a name to and start-value for the corresponding parameter
(NA = let the program compute the start-value):

model.DHP.1 <- specifyModel ()

RIQ -> ROccAsp, gammabl, NA
RSES -> ROccAsp, gammab2, NA
FSES -> FOccAsp, gamma63, NA
FIQ -> FOccAsp, gamma64, NA
FOccAsp -> ROccAsp, betabe, NA
ROccAsp -> FOccAsp, beta6h, NA
ROccAsp <-> ROccAsp, sigma777, NA
FOccAsp <-> FOccAsp, sigma88, NA
ROccAsp <-> FOccAsp, sigma78, NA

e The paths for the disturbance variances of the endogenous variables
may be omitted, as may the Nas for the start-values.
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e The sem package also supports equation-style specification of the
model, via the specifyEquations function; for the example:

model.DHP.1 <- specifyEquations/{()
ROccAsp = gammabl*RIQ + gammab2*RSES + betab6*FOccAsp
FOccAsp = gammab4*FIQ + gammab63*FSES + beta65*ROccAsp

V (ROccAsp) = sigma77

V (FOccAsp) = sigma88
C (ROccAsp, FOccAsp) = sigma78
e As in the case of specifyModel, it is not necessary to specify
V (ROccAsp) = sigma77 and V (FOccAsp) = sigma88 explicitly.
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e As was common when SEMs were first introduced to sociologists,
Duncan, Haller, and Porter estimated their model for standardized

variables.
— That is, the covariance matrix among the observed variables is a

correlation matrix.
— The arguments for using standardized variables in a SEM are no

more compelling than in a regression model.
- In particular, it makes no sense to standardize dummy regressors,

for example.
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e To obtain FIML estimates for the Duncan, Haller, and Portes model,
sem.DHP.1 <- sem(model.DHP.1, S=R.DHP, N=329,
fixed.x=c ('RIQ’, ’'RSES’, 'FSES’, 'FIQ'))
summary (sem.DHP. 1)

e Estimates and standard errors for the model are as follows:

Parameter | Estimate Standard Error

Y51 0.237 0.053

Vs9 0.176 0.047

Bse 0.398 0.104

Vo3 0.219 0.047

Yeou 0.311 0.056

Bes 0.422 0.131

a% 0.793 0.074

o3 0.717 0.087

078 —0.495 0.136
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— The ratio of each estimate to its standard error is a \Wald statistic for
testing the null hypothesis that the corresponding parameter is 0,
distributed asymptotically as a standard normal variable under the
hypothesis.

— Note the large (and highly statistically significant) negative estimated

error covariance, corresponding to an error correlation of

—0.4
= % = —.657

"0 = 798 % 0717
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» Because all of the explanatory variables in a structural equation of a
recursive model are uncorrelated with the error, the equation can be
consistently estimated by OLS.

e For a recursive model, the OLS, 2SLS, and FIML estimates coincide.

» Estimation of a block-recursive model is essentially the same as of a
nonrecursive model:
e All variables in prior blocks are available for use as IVs in formulating
2SLS estimates.

e FIML estimates reflect the restrictions placed on the disturbance

covariances.
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6. Latent Variables, Measurement Errors, and
Multiple Indicators

» The purpose of this section is to use simple examples to explore the
consequences of measurement error for the estimation of SEMs.

» | will show:
e when and how measurement error affects the usual estimators of
structural parameters;

e how measurement errors can be taken into account in the process of
estimation;

e how multiple indicators of latent variables can be incorporated into a
model.
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» Consider the model displayed in the path diagram in Figure 11.

» The path diagram uses the following conventions:
e Greek letters represent unobservables, including latent variables,
structural errors, measurement errors, covariances, and structural
parameters.

e Roman letters represent observable variables.

e Latent variables are enclosed in circles (or, more generally, ellipses),
observed variables in squares (more generally, rectangles).

e All variables are expressed as deviations from their expectations.
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Y51 /

V62 \

Figure 11. A nonrecursive model with measurement error in the endoge-
nous variables.
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xs (here) observable exogenous variables

yS observable fallible indictors of latent
endogenous variables

ns (“eta”) latent endogenous variables

(s (“zeta”) structural disturbances

s (“epsilon”) measurement errors in endogenous indicators

vs, Bs (“gamma’”, “beta”) structural parameters

os (“sigma”) covariances

» The model consists of two sets of equations:
(a) The structural submodel.-
N5 = Y5121 + Bsene + C7
M6 = YeaTa + Besls + Cs
(b) The measurement submodel-
Y3 = N5+ &9
Ys = Mgt €10
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» We make the usual assumptions about the behaviour of the structural
disturbances — e.g., that the (s are independent of the zs.

» \\Ve also assume “well behaved” measurement errors:
e Each ¢ has an expectation of 0.

e Each ¢ is independent of all other variables in the model (except the
indicator to which it is attached).

» One way of approaching a latent-variable model is by substituting
observable quantities for latent variables.
e For example, working with the first structural equation:
N5 = Y5121+ Bsene + 7
Ys — €9 = V51®1 + Bse(ys — €10) + (5
Ys = Y5121 + Bseya + (7
where the composite error, (7, is
C/7 = (7 + &9 — B6c10
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e Because the exogenous variables x; and z, are independent of all
components of the composite error, they still can be employed in the
usual manner as IVs to estimate ;, and (.

» Consequently, introducing measurement error into the endogenous
variables of a nonrecursive model doesn’t compromise our usual
estimators.

e Measurement error in an endogenous variable is not wholly benign: It
does increase the size of the error variance, and thus decreases the
precision of estimation.
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» Now examine the path diagram in Figure 12.

» Some additional notation:
xs (here) observable exogenous variable or fallible

indicator of latent exogenous variable
& ("Xi") latent exogenous variable
0 (“delta”) measurement error in exogenous indicator

» The structural and measurement submodels are as follows:
e structural submodel:
Ys = Ya€e + Va2 + (7
Ys = V5373 + Bsays + (g
e measurement submodel:
r1 = &g+ dg
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Figure 12. A structural-equation model with measurement error in an ex-
ogenous variable.
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» As in the preceding example, I'll substitute for the latent variable in the

first structural equation:

Ys = Yag(T1 — 09) + Vo2 + (5
= YueT1 + Yao®2 + (5
where
C/7 = (7 — Va609
is the composite error.

1QS Barcelona Copyright © 2016 by John Fox




Introduction to Structural-Equation Models 102

» If ;1 were measured without error, then we would estimate the first
structural equation by OLS regression — i.e., using x; and x5 as IVs.
e Here, however, r, is not eligible as an IV since it is correlated with oy,
which is a component of the composite error (..

e Nevertheless, to see what happens, let us multiply the rewritten
structural equation in turn by z; and x5 and take expectations:
014 = Yae01 T V2012 — Vas0h
O = Y012 + V205
— Notice that if x1 is measured without error, then the measurement-
error variance o2 is 0, and the term —~,,032 disappears.

e Solving these equations for ~,; and v,, produces
01403 — 012024

Y6 = 32 2 2 9
0105 — 019 — 0303

2 2
01024 — 012014 74691209

Y42 = 2 2 2 2 2 2
0102 — 012 0103 — 0713
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» Now suppose that we make the mistake of assuming that x, is measured
without error and perform OLS estimation.
e The OLS estimator of v,4 “really” estimates
;01405 — 0120

Va6 = 2 9 2
0105 — 079

e The denominator of the equation for - is positive, and the term —o2073

in this denominator is negative, so |7)s| < |74
—That is, the OLS estimator of v,; is biased towards zero (or
attenuated).
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e Similarly, the OLS estimator of v,, really estimates
2
, 01024 — 012014

Ya2 = 2 9 2
0105 — 012
2
V4601209
= Yo+ 3 9 9
0103 = 012
= "}/42+ bias

where the bias is 0 if
— ¢ does not affect y, (i.e., v, = 0); or

- & and z; are uncorrelated (and hence o, = 0); or
— there is no measurement error in x; after all (o2 = 0).
e Otherwise, the bias can be either positive or negative; towards 0 or

away from it.
1QS Barcelona Copyright © 2016 by John Fox
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» Looked at slightly differently, as the measurement error variance in z;

grows larger (i.e., as 02 — o00),
/ 094

Vi = 5
42 O'%

e This is the population slope for the simple linear regression of y, on -
alone.

e That is, when the measurement-error component of z; gets large,
it comes an ineffective control variable as well as an ineffective
explanatory variable.

» Although we cannot legitimately estimate the first structural equation by
OLS regression of y4 on x; and z,, the equation is identified because
both x5 and x5 are eligible 1Vs:

e Both of these variables are uncorrelated with the composite error ¢’
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» It is also possible to estimate the measurement-error variance o2 and
the true-score variance o
e Squaring the measurement submodel and taking expectations
produces
E (27) = E[(& + 00)7]
U% = 0(23 + ag
because ¢; and dy are uncorrelated [eliminating the cross-product
E(&g0)]-
e From our earlier work,
014 = V607 + V12012 — V460
— Solving for o3,
V4601 + V42012 — O

2
g 9 -
Y16
and so

2 2

06 =01 — 09
1QS Barcelona Copyright © 2016 by John Fox
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— In all instances, consistent estimates are obtained by substituting
observed sample variances and covariances for the corresponding
population quantities.

— the proportion of the variance of x; that is true-score variance is
called the reliability of x;; that is,
O'2 O'2
reliability(z1) = -2 = ——2°

2 2 2
o1y 05+o0g

— The reliability of an indicator is also interpretable as the squared
correlation between the indicator and the latent variable that it
measures.

» The second structural equation of this model, for y;, presents no
difficulties because x1, x2, and x5 are all uncorrelated with the structural
error (g and hence are eligible IVs.
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» Figure 13 shows the path diagram for a model that includes two different
indicators z; and z, of a latent exogenous variable &.

» The structural and measurement submodels of this model are as follows;
e Structural submodel:
Ys = Yalo + Busys + (7
Ys = V5323 + Bsays + (g
e Measurement submodel:
11 = £+ 0
x9 = A+ 1o

e Further notation:
A (“lambda”) regression coefficient relating an indicator

to a latent variable (also called a
factor loading)

1QS Barcelona Copyright © 2016 by John Fox
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Figure 13. A model with multiple indicators of a latent variable.
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¢ Note that one of the As has been set to 1 to fix the scale of &.
— That is, the scale of ¢, is the same as that of the reference indicator
xXq.
— Alternatively, the variance of the latent variable £; could be set to 1
(i.e., standardizing &;).
— Without this kind of restriction, the model is not identified.

— This sort of scale-setting restriction is called a normalization.
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» Once again, | will analyze the first structural equation by substituting for

the latent variable &;, but now that can be done in two ways:
1. using the equation for z1,

Yo = Yag(21 — o) + Busys + (7
= YuoT1 + Bugys +
where
7 = C7 = 71609
2. using the equation for x,

Ty O
Ys = Yy <7 - T) + Busys + (7
= %552 + Basys + (7

where N
/7/ = C? - %510
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» Next, multiply each of these equations by 25 and take expectations:

031 = V46013 + 345035
V46

034 = ——093 + 345035
e These equations imply that
023
A=—
013

» Alternative expressions for A may be obtained by taking expectations of
the two equations with the endogenous variables, y, and y;, producing

024
A==
014
and o
25
A=
015

e Thus, the factor loading ) is overidentified.
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e [t seems odd to use the endogenous variables y, and y; as in-
struments, but doing so works because they are uncorrelated with
the measurement errors dy and d;, (and covariances involving the
structural error ¢, cancel).

» Now apply x5 to the first equation and x; to the second equation,
obtaining
021 = Y4012 + B45025
o1 = MUIQ + 845015

A
because x5 is uncorrelated with C’7 and z; is uncorrelated with C’7’.

e We already know )\ and so these two equations can be solved for v,
and 5.

e Moreover, because there is more than one way of calculating
(and hence of estimating) A, the parameters ~,; and 3,5 are also
overidentified.
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» In this model, if there were only one fallible indicator of &;, the model
would be underidentified.

114
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» |dentification of models with latent variables is a complex problem
without a simple general solution.

» A global necessary condition for identification is that the number of free
parameters in the model can be no larger than the number of variances
and covariances among observed variables.

e Unlike the order condition for observed-variable nonrecursive models,

this condition is insufficiently restrictive to give us any confidence that
a model that meets the condition is identified.

e That is, it is easy to meet this condition and still have an underidentified
model.
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» A useful rule that sometimes helps is that a model is identified if:
(a) all of the measurement errors in the model are uncorrelated with
one-another;

(b) there are at least two unique indicators for each latent variable, or if
there is only one indicator for a latent variable, it is measured without
error,

(¢) the structural submodel would be identified were it an observed-
variable model.

» The likelihood function for an underidentified model flattens out at the
maximum, and consequently
e the maximum isn’t unique; and

¢ the information matrix is singular

» Computer programs for structural-equation modelling can usually detect
an attempt to estimate an underidentified model, or will produce output
that is obviously incorrect.
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6.5.1 A Latent-Variable Model for the Peer-Influences Data

» Figure 14 shows a latent-variable model for Duncan, Haller, and Portes’s
peer-influences data.
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Respondent's N \
Parental Aspiration = )
x

Respondent's
Occupalional Aspiration
¥

Respondent's \
General Aspiration i

Respondent's
Family SES
X3

Friend's
Inteligence
X5

k\
= )

Friend’s
Educalional Aspiration
Ya

Figure 14. Latent-variable model for the peer-influences data.
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» The variables in the model are as follows:
xr1 respondent’s parents’ aspirations
o respondent’s 1Q
x3 respondent’s family SES
x4 best friend’s family SES
x5 best friend’s 1Q
x¢ best friend’s parents’ aspirations
y1 respondent’s occupational aspiration
1o respondent’s educational aspiration
y3 best friend’s educational aspiration
ys best friend’s occupational aspiration
7, respondent’s general aspirations
1, best friend’s general aspirations

» In this model, the exogenous variables each have a single indicator
specified to be measured without error, while the latent endogenous
variables each have two fallible indicators.
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» The structural and measurement submodels are as follows:
e Structural submodel:
M = Y1121+ ViaT2 + Y1373 + YuTa + B1amy + G
Ny = Y233 + Yo4T4a + Vo575 + Yoo + Loy + (o

2

2

V(G =

2

Vv ( CQ ) = 7702

C(Cl» Cz) = 2/112
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e Measurement submodel:
Yyr = 1m+éer
Yo = Ay + €2
Yz = Agpi)y + €3

Ys = Mot &4
Viel) = 0y
Vies) = 05
V(es) = 03,
Vies) = 0y
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e sem code for the example:

model.DHP.2 <- specifyEquations (
covs="RGenAsp, FGenAsp") # alternative to V (), C()

RGenAsp = gamll*RParAsp + gaml2*RIQ + gaml3*RSES

+ gaml4*FSES + betal2*FGenAsp
FGenAsp = gam23*RSES + gam24*FSES + gam25*FIQ

+ gam26*FParAsp + beta2l*RGenAsp
ROccAsp = 1*RGenAsp

REdAsp = lam21 (1) *RGenAsp # explicit start wvalues
FOccAsp = 1*FGenAsp
FEdAsp = lam4d2 (1) *FGenAsp

sem.DHP.2 <- sem(model.DHP.2, S=R.DHP, N=329,
fixed.x=c (' RParAsp’, 'RIQ’, ’'RSES’,
"FSES’, '"FIQ', 'FParAsp’))
summary (sem.DHP.2)
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» Maximum-likelihood estimates of the parameters of the model and their
standard errors:

Parameter | Estimate Std. Error | Parameter | Estimate Std. Error
Y11 0.161 0.039 | A%, 1.063 0.090
Y19 0.250 0.044 | A, 0.930 0.070
Y13 0.218 0.044 | 0.281 0.046
Y14 0.072 0.050 | 3 0.264 0.045
Va3 0.062 0.052 | 19 —0.023 0.051
You 0.229 0.044 | 67, 0.412 0.051
Yos 0.349 0.045 | 65, 0.336 0.052
Yo 0.159 0.039 | 055 0.311 0.046
B1a 0.184 0.095 | 6%, 0.405 0.046
B 0.235 0.119
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¢ With the exception of 7,, and 7,5, the direct effect of each boy’s SES
on the other’s aspirations, all of the coefficients of the exogenous
variables are statistically significant.

e The reciprocal paths, Bu and 321, have respective p-values just smaller
than and just larger than .05 for a two-sided test, but a one-sided test
would be appropriate here anyway.

e The negative covariance between the structural disturbances, @12 =
—0.023, is now close to 0 and non-significant.
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e Because the indicator variables are standardized in this model, the
measurement-error variances represent the proportion of variance of
each indicator due to measurement error, and the complements of the
measurement-error variances are the reliabilities of the indicators.

— For example, the estimated reliability of y; (the respondent’s reported
occupational aspiration) as an indicator 7, (his general aspirations)
is1—0.412 = .588.
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6.5.2 A Confirmatory-Factor-Analysis Model

» If there are only exogenous latent variables and their indicators, the
latent-variable SEM model specializes to the confirmatory-factor-
analysis (CFA) model, which seeks to account for the correlational
structure of a set of observed variables in terms of a smaller number of
factors.

» The path diagram for an illustrative CFA model appears in Figure 15.
e The data for this example are taken from Harman'’s classic factor-
analysis text.

e Harman attributes the data to Holzinger, an important figure in the
development of factor analysis (and intelligence testing).
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Figure 15. A confirmatory-factor-analysis model for three factors underly-
ing nine psychological tests.
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e The first three tests (WWord Meaning, Sentence Completion, and
Odd Words) are meant to tap a verbal factor; the next three (Mixed
Arithmetic, Remainders, Missing Numbers) an arithmetic factor, and
the last three (Gloves, Boots, Hatchets) a spatial-relations factor.

e The model permits the three factors to be correlated with one-another.

e The normalizations employed in this model set the variances of

the factors to 1; the covariances of the factors are then the factor
intercorrelations.
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» The Holzinger CFA model can be coded using specifyModel,

specifyEquations, or, even more compactly, the cfa function in the
sem package.

129

model .Holzinger.1l <- cfa(reference.indicators=FALSE)

Verbal: Word.meaning, Sentence.completion, Odd.words

Arithmetic: Mixed.arithmetic, Remainders,
Missing.numbers

Spatial: Gloves, Boots, Hatchets

sem.Holzinger.l <- sem(model.Holzinger.1,
S=R.Holzinger, N=696)
summary (sem.Holzinger.1)
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e Alternatively, to specify orthogonal (uncorrelated) factors:

model.Holzinger.2 <- cfa(reference.indicators=FALSE,
covs=c ("Verbal", "Arithmetic", "Spatial"))
Verbal: Word.meaning, Sentence.completion, Odd.words
Arithmetic: Mixed.arithmetic, Remainders,
Missing.numbers
Spatial: Gloves, Boots, Hatchets
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» FIML estimation in the presence of missing data.

» Multiple imputation of missing data (using the mi package).
» Bootstrapped standard errors.

» Robust (“sandwich”) standard errors and test statistics.

» Computation of a variety of statistics associated with SEMs, such as
“‘modification indices” (score tests for fixed parameters), indirect effects,
“fit indices,” standardized coefficients, and factor scores (for latent
variables).

» Weighted 2SLS estimation.

» Methods for many of the standard R generics associated with statistical
models, including anova (for LR tests), AIC, BIC, coef, deviance,
logLik, residuals, and vcov.
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» Soft-coded objective functions (ML, GLS, and FIML for missing data are
supplied), and optimizers (optimizers based on nim, niminb, and optim

are supplied).

» The ML, GLS, and FIML objective functions and an nim-based optimizer
are programmed in compiled code for efficiency.

» Zhenghua Nie and Jarrett Byrnes are coauthors of the sem package.

» There are other structural-equation modeling packages for R, most

notably:
o systemfit, for observed-variable SEMs

e lavaan, for latent-variable models
e OpenMkx, for latent-variable models
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