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4

Linear .
Structural-Equation
Models ‘

 Structural-equation models enable the researcher to examine simultaneous

relationships among a number of variables, some of which may exert mutual
influence on each other. These models are therefore differentiated from the
single-equation linear models discussed in the first ‘three chapters of this text,
which treat the relationship of one dependent variable to one or more of its
causes. Structural-equation models likewise differ from direct multivariate
extensions of the general linear model which, although they take into account
the correlation of several dependent variables, treat these variables in parallel
rather than distinguishing causal relations among them. (see, for example,
Morrison, 1976: Chapter 3). - f o

In the social sciences, structural-equation models are frequently termed
«causal models,” and although this terminology accurately reflects the purpose
of the models, it is potentially misleading for two quite different reasons. On
the one hand, most data analysis in the social sciences seeks to discover causal
relations: Few studies are simply correlational or predictive in their purpose.
On the other hand, structural-equation models in no way avoid the pitfalls of
drawing causal inferences from observational data. The term “causal model,”
_then, at once promises too much and is nonspecific. ' ,

Yet, one of the great virtues of structural-equation models is the light they
shed on the process of causal interpretation of correlational data, making
explicit the assumptions underlying causal inference. These insights apply not
only te the formal application of structural-equation models, but also to other
methods of data analysis.

This chapter begins with a consideration of the form and specification of

structural-equation models. Section 4.2 develops the method of instrumental-
221



222  LINEAR STRUCTURAL-EQUATION MODELS

variables estimation, which provides us with a tool for analyzing and estimat-
ing structural-equation models. Having specified a structural-equation model,
it is necessary to determine whether the model is estimable, an issue termed the
identification problem. In Section 4.3 we show how the instrumental-variables
method and other approaches lead to a solution of the identification problem,
after which, in Section 4.4, we describe several estimation methods applicable
to structural-equation models. In Section 4.5 we explain how an estimated
structural-equation model may be used for causal interpretation of statistical
relationships, and we take an opportunity to draw general methodological
lessons for causal inference from this discussion.

Variables in the social sciences are frequently measured with error; likewise,
there is often a less-than-perfect relation between theoretical constructs and
their measured indicators. There has been a consequent interest to incorporate
measurement errors and multiple indicators in structural-equation models. In
Section 4.6, after considering some simple examples of models with measure-
* Ient errors, we present a very general model for variables measured with error.
The final section of the chapter takes up the evaluation of structural-equation
models that have been fit to data. T :

Outside of economics, the majority of applications of structural-equation
models have appeared in the literature on social stratification. These applica-
tions are reflected in the illustrations and exercises of this chapter.

4.1. SPECIFICATION OF STRUCTURAL-EQUATION MODELS

This section begins by distinguishing the different categories of variables that
enter into a structural-equation model, and develops graphic and equation
representations of the model, introducing notational conventions along thé
way. We discuss the assumptions underlying the model, and define two
important varieties of structural-equation models, termed recursive and block-
recursive models. The section concludes by defining what is called the reduced
form of a structural-equation model. -
Structural-equation models include three broad classes of variables: endoge-
nous variables, exogenous variables, and disturbances. Endogenous variables, as
their name implies, are determined within the model, and may be influenced by
other endogenous variables, by exogenous variables, and by disturbances.
Exogenous variables, in contrast, are treated as givens”: They may appear as
causes in the model, but not as effects. Disturbance variables, sometimes termed
errors Or errors in equations, represent most importantly the aggregated omitted
causes of the endogenous variables, and, thus, play a role similar to that of the
error variable in the general linear model. Disturbance variables are taken to
be independent of the exogenous variables in the model. ' -

4.1.1. Path Diagrams

One useful way of representing the strucfural relations of a model is in the
form of a causal graph or path diagram. Consider, for example, the model
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FIGURE 4.1. Nonrecursive structural-equation model for the Duncan, Haller, and Portes peer-
infiunences data. X;, respondent’s intelligence; X3, respondent’s family SES; X;, best friend’s family
SES; X, best friend’s intelligence; Ys, respondent’s occupational aspiration; . ¥e» best- friend’s
‘occupational aspiration. (Source: s¢e Table4.2). o .

€g

shown in Figure 4.1, from work done by Duncan, Haller, and Portes(1968) on
the occupational aspirations of high-school boys. The exogenous variables in
the model are represented by X’s, the endogenous variables by Y’s, and the
disturbances by &’s. The directed (ic., one-way) arrows in the model indicate
the direct effect of one variable on another: For example, each ‘boy’s intelli-
gence is specified to affect directly his own aspirations, but not those of the
other boy. The double-headed arrows indicate statistical relationships that are
not given causal interpretation. Thus, the model, and structural-equation .

models in general, permit the exogenous variables to be correlated with one
another. The disturbances, similarly, are not assumed- to be uncorrelated: In
this model, then, the aggregated'omit’ted'Caﬁs&S' of the respondent’s aspirations
fay be correlated with the omitted causes of his best friend’s aspirations—as
appears substantively sensible. Note, furthermore, that the 1al¢k‘0f'corré1ati0nv1
between eXOgenous variables and disturbances is reflected in the omission of
double arrows linking variables in these two classes. '

. Each directed arrow in the path diagram s labeled with a symbol represent-
ing a structural coefficient of the: model. As we shall se¢ in. Section 4.1.2,
structural coefficients ar¢ simply regression coeﬁigiqnts“intcrp_reged as direct
effects. y’s are used to represent the effects of exogenous variables on endoge-
nous variables, while B’s give the  effects of endogenous variables on each
other. The two subscripts of each structural parameter specify respectively the -
index of the effect and of its cause. Ysy, therefore, is the direct effect of X, on
Y,, and Bsg is the effect of Y, on Ys. The double-headed arrows are labeled with
o’s, standing for the covariances of the variables attached by the arrows. For
notational convenience; each variable in the model has been assigned a unique
index. B ’ '

1Throughout this chapter, wWe shall employ the assumptions that the disturbances and €X0g-
enous variables ar¢ independent, nncorrelated, or asymptotically uncorrelated‘interchangeably,
according to convenience.
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4.1.2. Structural Equations ‘

To eliminate constant terms from the structura] equations, we simply stipulate
that each endogenous and €xogenous variable be measured as deviations from
its expectation.? Frequently, in sociological applications, structural-equation -
models are specified for standardized variables, so that the coefficients of the
model are standardized structural parameters. This is the case, for example, in
Duncan, Haller, and Portes’s research, So as not to proliferate notation, we
shall not distinguish explicitly between the standardized and unstandardized
cases, ‘ . .

1Y — By ¥, - Ya Xl = ¥ X, + 0X;+ 0x, = &
—BsYs + 1Y, + 0x, + 0x, - Yo3 X3 ~ Ve X, = g

Finally, for compactness and generality, we write the structural-equation
model as a matrix €quation:

o B y + T X; = g (4.2)
(9% q) (gx1) (¢Xm) (mx1) (gx1)

%As in the single-equation Linear model, we require only that the structural €quations be linear
in the parameters. Essentially nonlinear Structural-equation models are beyond the scope of this
chapter: see Amemiya (1974, 1977) and Gallant 1977,

3So'as to avoid complicating the notation in this chapter, unless otherwise noted, we do not use
asterisks to indicate that variables are in mean-deviation form, To specify a constant term for a .
Structural equation, it is merely necessary to leave variables in raw-score form and to include as a
regressor a dqummy €xogenous variable coded one for each observation, Constants are rarely of
substantive interest, however.
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The vectors y;, X, and &, contain endogenous variables, exogenous variables,
.and disturbances, each for the ith observation of a sample. B contains the
structural coefficients relating the endogenous variables to each other, while T
contains the coefficients relating the endogenous to the exogenous variables.
Each row of the parameter matrices includes the coefficients for one structural
equation of the model, and we order the equations so that ones appear on the
diagonal of B. The matrix representation of the Duncan, Haller, and Portes
model is shown in equation (4.3). As a matter of converience, we have omitted
the subscript i for observation.

X

1 —Bsg Ys + —Ys1 T Ys2 0 0 X, =(87).
— Bgs 1 Ye 0 0 Y3 —Yes){ X3 Es

X, )
(4.3)

Sometimes we shall require the structural equations for a sample of n observa-
tions: ' :

, Y B+ X I = E
~ (nxq) (gXq) (mxXm) (mXq) . (nXq)

Here, we have transposed the matrices of structural parameters, writing
equations as columns, so that each observation comprises a row of Y, X, and E.

4.1.3. Assumptions Underlying the Model -

The assumptions underlying a structural-equation model are of two general
types: first, assumptions of causal structure captured in the structural equa-
tions of the model; and second, distributional assumptions regarding the
errors. Assumptions of causal structure. are implicit in the specification of B
and T, certain of whose entries are prespecified to be zero, and in the choice of
endogenous and exogenous variables. o ' :

We have already remarked that the exogenous variables and disturbances
are defined (i.e., in an application, assumed) to be uncorrelated. It is often
convenient to express this assumption in terms of a probability limit:

'plim-l-X’E = 0
n (mXq)

The remaining assumptions about the distribution of the disturbances are
analogous to the assumptions concerning the error in the general linear model:
that the observations on each disturbance are independently and normally
distributed with expectation zero and common variance. Note that although we
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€6

€7
FIGURE 4.2. Recursive structural-equation model for the Blau and Duncan stratification data.
Xi, father’s education; X,, father’s occupational status; Y3, education; ¥j, status of first job; ¥s,
1962 occupational status. '

assume independent observations, vfre in general éxpect different disturbance
variables to be correlated. The joint distribution of & is assumed to be
multivariate normal with covariance matrix 2.

4.1.4. Recursive and Bloék-ReCurslve‘ Models

Although structural-equation models do not in general require that different
disturbance variables be independent, ‘'such assumptions may be made. In
conjunction with special patterns of restrictions on the stractural coefficients of
the model, restrictions on disturbance covariances serve to define two im-
portant varieties of structural-equation models: recursive and block-recursive
models. Models that do not satisfy the special requirements of recursive and
block-recursive structures ‘are termed nonrecursive. As we shall discover in
Sections 4.3 and 4.4, the classification of a model has. implications for its
identification and estimation. '
An example of a recursive structural-equation model, taken from work on
stratification by Blau and Duncan (1967), is shown in Figure 4.2. This model is
 recursive because it meets two special conditions: (1) Different disturbance
variables are specified to be uncorrelated—a characteristic reflected in the
absence of bidirectional arrows linking the disturbances; and (2) the causal

Ya~~BM be
Bta
Y, Yy g& 'Ab
bap Y, i
(a) {b)

FIGURE 4.3. Relations ruled out by recursive structure, (a) Reciprocal effects (b) Causal loop.
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“structure of the model is unidirectional—there are no reciprocal paths or
causal loops of the sort illustrated in Figure 4.3.
In the matrix representation of the model, the uncorrelated disturbances of
a recursive model imply a.diagonal covariance matrix of disturbances. The
unidirectional causal structure implies a lower-triangular B matrix, or a B
matrix that can be made triangular by a reordering of the endogenous
variables. For the Blau and Duncan stratification model

1 0 0

B=|"Bs 1 0

A\ =By B 1
¢ 0 O
2.=10 o7 0
0 0 of

‘It should be stressed that the special requirements of a recursive model,
including the stipulation of uncorrelated disturbances, must be justifiable on
substantive grounds, as is the case generally for the application of statistical
models. In the Blau and Duncan model, for example, we may question the
independence of ¢, and &, for Y, and Y; are likely to have common omitted
causes. . :

It may be the case that a structural-equation model is not recursive, but that
the requirements for a recursive model are met for subsets (termed blocks) of
the endogenous variables and associated disturbances, rather than for these
variables treated individually. That is, if we partition the endogenous variables
and disturbances into blocks: (1) causation is unidirectional between blocks;
and (2) errors are uncorrelated between blocks. Within blocks, mutual causa-
tion and correlated disturbances are permitted. :

A block-recursive model is shown in Figure 4.4; this model is a modification
of one specified by Duncan, Haller, and Portes (1968). Here ¥; and ¥, together
with the associated errors &, and &, comprise the first block, and Y,, Y3, &1,
and &;, comprise the second block. For this model,

1 - Bsg '= 0 0
-Bs 1 1 O 0
B=|--—-—-—"--——" -1] ___________
B O L 1 — B
0 —Bss | —Bw 1
Oy 09,10 l} 0 0
o o 10 0
5 o |2l fol o T
0 _ 0 { 011,11 %11,12
0 0 o1 %1212
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FIGURE 4.4. Block-recursive model for the Duncan, Haller, and Portes peer-influences data. X;,
respondent’s intelligence; X,, respondent’s family SES; Xj, best friend’s family SES; X, best
friend’s intelligence; Y5, respondent’s occupational aspiration; Y, best friend’s occupational
aspiration; Y5, respondent’s educational aspiration; Y3, best friend’s educational aspiration.
(Source: see Table 4.2.)

Note that B, though not triangular, is block triangular when partitioned
according to blocks of endogenous variables, and that 2, is block diagonal
when partitioned by blocks of disturbances:

B, 0
pe (B 2
(52 5,
(2 0
2“‘( 0 zn)

These two characteristics, of course, may be extended to models with more
than two blocks and with different numbers of endogenous variables in each
block. For the peer-influences data, the specification of uncorrelated errors
between blocks is questionable, for the residual causes of a boy’s educational -
aspirations are likely also to affect his occupational aspirations.

4.1.5. The Reduced Form of the Model

Thus far, we have dealt with the structural equations of a simultaneous-equa-
‘tion model, equations that specify the direct causal relations among the
variables in the model. The reduced form of a structural-equation model
expresses the endogenous variables in terms of the exogenous variables and
disturbances, which comprise the ultimate inputs to the system under study.
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Solving the structural equations (4.2) for y is straightforward: .
y=-BTx+ B'ls

= I x + 8 ’ (4.9)
) (gxm) (mX1)  (@X1)
where IT = —B~T is the matrix of reduced-form coefficients, and 8 = B leis

the vector of reduced-form errors. Note that II is a function of the structural
parameters (B and T), and that 8 results from a linear transformation of the
structural disturbancese. -~ - :

In solving for y we have implicitly assumed that B is nonsingular, and we
now make this condition a requirement for a well formed structural-equation
model. This requirement is not problematic, however, since our method of
constructing structural equations, which places ones on the main diagonal of
B, virtually assures that B will be nonsingular.® :

In the reduced form, x and 3§ are uncorrelated, because X contains the
exogenous variables, while  is a linear tramsformation of the structural
disturbances ¢. The reduced form, therefore, meets the assumptions of ordinary
least-squares (OLS) estimation, since the independent variables in the reduced
form (x) are uncorrelated with the errors-(8). We shall see later (Section 4.4)
~ that OLS estimation doés not in general provide consistent estimators of the

structural-form parameters. -

‘The reduced form has several uses: (1) It traces the indirect, as well as the
direct impact of the exogenous - variables on the endogenous variables (see
Section 4.5); (2) it is useful in certain forecasting applications;® and (3) it is
useful in deriving a procedure for determining the estimability of a structural-
equation model, a topic taken up in Section 4.3.

'We gave the structural form of the Duncan, Haller, and Portes peer-
influences model in equation (4.3). The reduced form of this model is

X

(Ys).___ _ 1 ~Bss —1(”.751 ¥ 0 0 ) X>
\ X — Bes 1 -0 0 ~Yes ~Yea X,

X,
-1
e 1 —Bss (57 )
—Bss 1 s
4The assignment of a coefficient of one to an endogenous variable is each structural equation is
" sometimes called a normalization rule. If we view a structural equation as simply specifying a
relation among the endogenous and exogenous variables of the model, the normalization employed
may be regarded as arbitrary. For models representable as causal diagrams, it is natural to
normalize for the dependent variable in each structural equation. Some estimation methods (such
as 2SLS, see Section 4.4.1) are sensitive to the normalization applied, while others (€., FIML, also
in Section 4.4.1) are not. :
5Tn economics, structural-equation models are typically applied to time series, rather than to
cross-sectional data. ’ '



230 LINEAR STRUCTURAL-EQUATION MODELS
which, upon manipulation, yields

Ys1 — B x + Y52 St oy Tl Bss'Ysa X3

Y5 - 1- BS6B65 Bssﬁss 1- Bssﬁss

BseYea x +( 1 T )
1 = BseBss 4 1- BS6B6S 1 - Bssﬁss
= ﬂlel + 7752X2 + 7753X3 + 7754X4 + 85
Bes¥s1 Bss sy Ye3
Y, = X, + X, + — X,
6 1- Bs‘sﬁss ¥ 1- Bssﬁss ; 1- Bssﬁss
Y64 Bss ' 1 )
- X, + £
1 - Bssﬁss 4 ( 1- Bssﬁss - Bssﬁss K
=7 X, T T X; + T3 Xz + 7 Xy + 86
PROBLEMS

4.1. For each of the path diagrams shown in Figure 4.5: (i) write out the
structural equations of the model; (ii) determine whether the model is
nonrecursive, recursive, or block recursive; and (m) find the reduced
form of the model.

42. The model in Figure 45(g) was employed by Rindfuss, Bumpass, and
~ St. John (1980) to study the possibly reciprocal relationship between
- women’s education and fertility. The variables in the model are:

X respondent’s father’s occupational status

X, - respondents race, coded one for blacks and zero

otherwise
X, number of respondent’s siblings- .
X, farm background, coded one if the respondent grew : ,

up on a farm

X regional background, coded one if the respondent
grew up in the South

X household composition when the respondent was 14
years old, coded zero if both parents were present in
the household and one otherwise

X,  religion, coded one if the respondent is Catholic

X; smoking, coded one if the respondent smoked prior

to age 16

X5 fecundxty, coded one. 1f the respondent had a miscar-
riage prior to the birth of her first child

Y,, respondent’s education at first marriage, in years
Y;;  age at first birth
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This model was fit to data from the 1970 National Fertility Survey, for a
sample of 1766 black and white American women, age 35 to 40, who had
one or more children. Comment on the specification of the model, paying
particular attention ‘to its causal structure and to the distributional
assumptions concerning the errors.

The.model diagrammed in Figure 4.5(h) was specified by Berk and Berk
(1978) to account for the division of household labor among the mem-
bers of a family. The model was estimated for a sample of 184 house-
_holds in Evanston, Illinois, an affluent suburb of Chicago. The variables

(f)

{e)

46 Covariances

Xg R

FIGURE 4.5. Path diagrams for structural-equation models. (g) Rindfuss, Bumpass, and St.
Johm’s model. (h) Berk and Berk’s model. (i) Duncan, Featherman, and Duncan’s model (adapted
with permission from Duncan, Featherman, and Duncan, 1972). (j) Lincoln’s model.
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(i)

i
FIGURE 4.5. (Continued).
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appearing in the model include:

Yn

Y.

Note: Y,;, Y5y, and Y5
members of the household can regularly contribute to the same tasks. As

‘ in Problem 4.2, comment on the spcciﬁcati_on of the model.

The model in Figure 4.5(i) appears in Duncan, Featherman, and Duncan’s

(1972) monograph on socioeconomic background

wife’s wages, in $1000s/month ‘ :
coded one if the wife is employed as a professional or
technical worker, zero otherwise _ .

coded one if the wife is-employed as a manager or

_ proprietor

coded one if there is a boy under one-year old in the
home

coded one if there is a girl under one-year old
coded one if there is a one-year-old boy
coded one if there is a one-year-old girl
coded one if there is a two-yea:-old boy

coded one if there is a two-year-old girl

year married

husband’s monthly income

coded one if the husband is employed as a profes-
sional or technical worker . :

coded one if the husband is employed as a manager
or proprietor :

coded one if, in the recent past, the husband decided
to do more housework

coded one if there is a boy 11-15
coded one if there is a girl 11-15
coded one if there is a boy 16-20
coded one if there is a girl 16-20

" husband’s education, measured in seven levels

coded one if, in the recent past, a child decided to do
more housework

proportion of household tasks generally done by the
wife : ‘ '
pfoportion of tasks generally done by the husband
proportion of tasks generaﬂy done by children’

233

are not constrained to sum to one, since different

and achievement. This

model, which was fit separately to each of several age groups of men, was
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estimated for the same 1962 sample as employed in Blau and Duncan’s
(1967) study. The variables are defined as follows:

'

X, ' father’s education

X, father’s occupational status

X, number of respondent’s siblings
Y, respondent’s education

Y; respondent’s occupational status
Y respondent’s income

Discuss the specification of Dunéan,,Feath‘erman,'_and Duncan’s model.

4.5. In a study of strike activity in metropolitan areas of the United States,
' Lincoln (1978) specified the structural-equation model shown in Figure -
4.5(). The model was estimated using data for 78 metropolitan -areas.
The variables in the model are: —_

X, the degree of concentration of union staff in the
metropolitan area; this index is high when most
union stafl members work for a relatively small
number of large unions

X,  the degree of concentration in employment

X, thelogof the number of employed workers

X, the proportion of workers who are in unionized
establishments

Y, the number of strikes in the period 1963-1969

Y, the number of strikers

Y,  the number of person-days idle due to strikes

Comment on the specification of Lincoln’s model.

42. INSTRUMENTAL-VARIABLES ESTIMATION

After specifying a ‘structural-equation: model, it is necessary to determine -
whether the parameters of the model may be estimated. This issue is called the
identification problem, and it will be taken up in the next section. The present
section is, therefore, a necessary detour, for instrumental-variables estimation
will provide us with an'approach to the identification problem as well as with a
means for approaching the topic ‘of ‘estimation " (Section 4.4). Although our
ultimate interest is in applying. the method. of instrumental variables to
structural-equation models, we shall develop the method in a more general
context. *
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Suppose, to begin, that we wish to estimate the simple-regression model
Y=a+BX+e (4.5)

and that we make the usual assumptions that E(e) =0, V(e) = o2, and X and
¢ are independent. (Here, X and Y are in raw-score form.) In Chapter 1, this’
model and these assumptions were employed in conjunction with least-squares
estimation. We shall now derive the ordinary-least-squares estimator of 81in an
alternative manner, termed the expectation method. Let-us express both X and
Y as deviations from their expectations; that is, Y* = Y — E(Y), and X* =

X — E(X). Then, because of the assumption that E(e) =0, t‘h‘e, model (4.5)
becomes Y* = BX* + &. Multiplying this equation through by X* and taking
expectations of both sides, we get® o

~

E(X*Y*) = .pE(X*Z) + E(X*e)

- (46)
Oxy = Box + Ox,

Here, oyy is the population covariance of X and Y, o3 is the population
variance of X, and oy, is the population covariance of X and g; this last
quantity is zero due to the stipulation that X and ¢ are independent. Solving
equation (4.6) for B gives us B = Oxy/0%.

We cannot of course apply this result without knowledge of the population
quantities oy, and o, knowledge that is generally unavailable. We
can, however, -estimate these parameters from sample data, employing the
sample variance S3 = Z(X; — X)?/(n — 1) and the sample covariance Syy =
TI(X, = X)(Y; = Y)}/(n — 1). We know that S and Syy are consistent esti-
mators; that is, plim S2 = 62, and plim Sy, = 0xy. The estimator B = Syy/S%
is, therefore, also consistent, for ' S :

Thus far, we have shown nothing new, because we recognize B as the usual
OLS estimator of 8. :

Suppose, however, that we cannot assume the uncorrelation of X and € in
model (4.5), which justified the crucial elimination of o, from equation (4.6),
but that there is some variable Z for which it may reasonably be-assumed that
plim S,, = 05, = 0, and- that plim S,y ="07x # 0.-In words, Z ‘and ¢ -are
uncorrelated in the population, but Z and X-are correlated. Then, following the
previous development, but multiplying through. by Z* = Z — E(Z ) rather -

6We assume throughout that expectations, variances,-and covariances exist.



236 LINEAR STRUCTURAL-EQUATION MODELS
than by X*, we obtain

E(Z*Y*) = BE(Z*X*) + E(Z*)
0zy = Bozx + 0z, (4.7)

= %zy
Ozx

Replacing the population covariances in equation (4.7) with their consistent
estimators produces a consistent estimator of B: B = Szy/Szx. Here, B is.
called an instrumental-variable (IV') estimator, which is generally distinct from
the OLS estimator, and Z is an instrumental variable. Recall that the two
critical requirements for an instrumental variable are uncorrelation with the
error (o5, = 0) and nonzero correlation with the independent variable (0zx #
0). OLS, then, may be thought of as a type of IV estimation, for which the
instrumental variable and the independent variable are one and the same.

The method of instrumental variables may be generalized to models with
several regressors, for which purpose we cast the model in matrix form:

B
B>
Y* = (X2, X5, Xx)| | te
B
=x*B+e - (4.8)

where Y* and the X* are written as deviations from their expectations,
climinating the constant term from B. Suppose that we have available k
instrumental variables in a vector z* , the entries of which are also in
deviation form. We require that

pim sz, =0,=0
. (kX1)

plim S,y = 2zx nonsingular
(kxk)

where s, and Szx contain sample covariances, and o, and 2, contain the
_corresponding population covariances. The first criterion specifies that the
instrumental variables are uncorrelated with the error in the population;
the second criterion requires that the instrumental variables are correlated with
the independent variables and that there is not perfect collinearity. Later on, to
obtain an asymptotic covariance matrix for the IV estimators, we shall also
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require the existence of the population covariance matrix for the instrumental
variables: pim Sz = 2zz.

Proceeding as before, we premultiply both sides of equation (4.8) by z* and
take expectations: : -

E(z*Y*) = E(z*x*)B + E(z*¢)
ozy = 2zxB t+ 0z
B = 2zk02zy
Substituting sample covariances for populatioﬁ covariagqes, we then obtain
b= Szbszy = (@X) Ty @)

as the IV estimator of B. Because S and szy are consistent estimators, so is b.

In equation (4.9), Z* , X*, and y* are data matrices of variables in
) (nxk) (nXk) (nx1) ’ ‘
mean-deviation form. ‘

The asymptotic covariance matrix of the IV estimator is given by

2
0. < _
"/’(b) = 72211(2222)(% , (4-10)

(A relatively simple but flawed proof of equation (4.10) is given in Johnston
(1972: Chapter 9); see McCallum ‘(1973) for the correction.) Because in
applications we are not in a position to know the population quantities in
equation (4.10), the covariance matrix for b must be estimated. We may
proceed as follows:” ' ' :

ee
Sk n-k-1 .
) ' (4.11)

= S3(Z*X*) 'ZrTH XML

For the sampling variances of b to be small, there must be large covariances
between the instrumental _variab_les and the regressors. For example, in the

TSince these results are asymptotic, it is also rcasomable to calculate SF = e'e/n. Using '
“degrees of freedom™ n — k —"1 rather than n in the denominator of SZ produces a larger estimate
of error variance and, hence, is conservative.
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sxmple—regressmn model (4.5), for which B= SZY/SZX, the asymptotic vari-
ance of B is

oez. o2 tf 1
V(B):T(}T) =';,—( 2 2")
‘\Ozx " \PzxOx

where p, is the population corrélation of Z and X.

PROBLEMS

46. Show how the expectation method may be used to derive the OLS
estimator in multiple regression.:Show that OLS estimation is a type of
IV estimation.

47% Cons1der the multlple-regressmn ‘model y* = X*B + ¢, for n observations
and k independent variables. Let Z* be an (n X k) matrix of instrumen-
tal variables, producing the IV estimator b = (Z*'X*) " 1Z*'y*. Let T be
any (k X k) nonsingular matrix.-Show that

(2)
®)
©

@

Z* = Z*T is also a matrix of instrumental variables; and that
using Z* in place of Z* produces the same IV estimates.

Why is it therefore valid to conclude that what is important about a
set of instrumental variables is the subspace that it spans and not
the basis selected for this subspace"

Flgure 4 6 shows the vector gcomctry of the one-independent vari-
able case, that is for the model y* = 8x* + ¢. In this figure, x* is

‘the mdependent—vanable vector for a particular sample; € = E(e]x*)

(why is it nonzero?); .zZ* = E(z*|x*) (why, from the figure, is Z
qualified to be an IV?); and §* = E(y*|x*) = Bx* + € (note that
E(y*) #.*; why?). In drawing Figure 4.6, we take a line of sight
pexpendlcular to the x*, Z* plane; in other words, we may think of €
and y* as orthogonal projections onto this plane. On the basis of
this figure, and working with the population analogs of the estima-
tors, explain why (i) the OLS estimator is biased, and (ii) the IV
estimator is not. [Hint: Show that the triangles (0, §*, #x*) and
(0,%*,x*) are similar and thus B = || 8x*||/lx*|| = |[j*{|/|%*]}; find
expressions for §* and X* using the fact that they are orthogonal
projections onto z*, and substitute these into the formula for B.]
Note that in this problem we are dealmg with the population
analogs of the estimators. Since. X* is’ not fixed over repeated

'samphng, these results expressed in terms.of expectations hold only

roughly in finite samples. Further information on the geometry of

" IV estimation may be found in Wonnacott and Wonnacott (1979:

453-455). .

s g
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FIGURE 4.6. Vector geometry of instru-
mental-variable estimation. (Adapted with per-
mission from Wonnacott and Wonnacott, 1979:
z* 454.)

4.3. THE IDENTIFICATION PROBLEM AND-ITS SOLUTION

As we have mentioned, once a structural-equation model is specified, it is
necessary to determine whether the parameters of the model can be estimated.
This issue of estimability is called the identification problem. In single-equation
lmear models with full-rank design matrices, the general assumptions of the
model assure that its parameters may be estimated. In structural-equation
models, the distributional assumptlons of the model are generally insufficient
to guarantee identification of its parameters, to assure 1den‘t1ﬁcat10n, additional
assumptions, taking the form of a przon restncnons on the parameters of the
model, are necessary.

In general, two sorts of prior restrictions are placed on the model: (1)
restrictions on structural parameters, typlca]ly specifying that certain parame-
ters are zero; and (2) restrictions on covariances between disturbances, typi-
cally specifying that certain of these covariances are zero. We shall first
consider the identification of nonrecurswe models, where no Testrictions are
placed on disturbance covanances, deriving general Tules for determmmg
‘whether a model is identified. Then we shall take up the identification of
recursive and block-recursive models which, as we know, specify that certain
disturbance covariances are zero. Finally, we shall examine. the identification
status of nonrecursive models that place restrictions on covariances between
disturbances.

A parameter in a structural-equation model is identified if 1t can be
estimated, and underidentified (or unidentified) otherwise. If more than one
estimator of the parameter can be obtained, then the parameter | is overiden-
tified; if just one estimator can be obtained, then the parameter is exactly (or
Jjust) identified. These distinctions are illustrated in Figure 4.7. The same
terminology is applicable to structural equatlons and to the structural-equation
model as a whole. Thus, a structural equation is just identified if there is one
and only one way of estimating its parameters. Likewise, a model is overiden-
tified if all its structural equations are identified, and if at least one structural
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Structural parameter
{ or equation or model)

EstimaV Not estimable

Identified Underidentified
One mimy \More .than
one estimate
Exactly identified Overidentified

FIGURE 4.7. Identification terminology.

equation is overidentified. In practice, the identification status of a model is
generally determined one structural equation at a time.

4.3.1. ‘.Ident'lﬁmtlonb of Nonrecursive Models

There are several approaches that can be taken to the identification problem.
The simplest approach employs the method of instrumental variables, and it is
with this approach that we begin. The IV approach yields the so-called order
condition, which is a necessary-but-not-sufficient condition for identification.
After pursuing the IV approach, we develop a method based on transforma-
tions of the strictural equations and on ‘the relationship of the structural
equations to the reduced form. This method produces a necessary-and-suffi-
cient condition for identification called the rank condition.

The Instrumental-Variables Approach Because they are independent of
the disturbances, the exogenous. variables of a_structural-equation model
provide a pool of instrumental variables for estimating the structural parame-
ters of the model. Consider the first structural equation of the Duncan, Haller,
and Portes model, given in equation (4.1) and repeated here:

Y, =vaX + YszXZ + Bss¥s + &7 (4.12)
Multiplying equation (4.12) through by the €X0genous variablés, ‘taking expec-

tations, and substituting sample covariances for population covariances pro-
duces four IV estimating equations: ‘

IVs - Estimating Equations

X Sps = CsSyp + Cszsﬁ + BsgSi6

X, S5 = Cs1 812 + Cs528 + BseSas (4.13)
X; S35 = C51813 + Cs383 + BsgSs6 ‘

X, Sss = C51814 + C5284 + BseSus
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Here there are four estimating equations in only three unknowns (Cs;, Cs,, and
Bs), since the sample covariances represent known coefficients calculable from
sample data. In general, therefore, the estimating equations (4.13) will be
overdetermined: For an actual sample, there will in general be no set of values
¢sy» Csp, and by that simultaneously satisfies all four equations.

Our problem, however, is not that we have too little information, but too
much: By arbitrarily discarding one IV estimating equation from (4.13), we can
-obtain consistent estimators: of the structural parameters. The surplus of
instrumental variables indicates that the structural equation is overidentified.

The essential nature of overidentification is clarified by considering the
population analogs of the estimating equations (4.13):

015 = Y1011 T Y5912 T BseOie

Oys = Ys1012 T Y5202 + BssO2s
(4.14)
035 = ¥s1013 T+ V52023 T BssT36

045 = Y1014 + Ys2024 T BssOs

If the model is correctly specified, and mdeed the X’s and &’s are independent,
thensequations (4.14) hold precisely and simultaneously.
It is helpful to think geometrically about the issue of overidentification. To

simplify the geometry, imagine that we wish to estimate the structural equation
Ys = v Xy + Bsa¥a t &7 (4.15)

and bhave available three exogenous variables, X, X,, and Xj to serve as
insttuments. Applying these instrumental variables produces three estimating
equations, each with a population analog. As we have pointed out with respect
to the Duncan, Haller, and Portes model, 'if the model (4.15) is correctly
specified, all three population equations hold simultaneously, despite the fact
that there are but two unknown structural parameters. As depicted in Figure
4.8(a), each equation represents a line in the ys; X PBsq Space. Since the
equations hold simultaneously, the three lines intersect at a point, determining
the true values of the parameters. : ‘

In the sample, however, the estimating equations are perturbed by sampling
error; that is, while oy, = 0, and while the average value (ignoring small-sam-
ple bias) of sy, over many samples is zero, in a particular sample it is unlikely
that sy, is precisely zero. Geometrically, the lines corresponding to the three
estimating equations do not in general intersect at a point, as shown in Figure
4.8(b), even if the model if correctly specified. Of course, if the estimating
equations are highly inconsistent with one another (i.e., if the lines in Figure
4.3(b) enclose a large triangle), then we should suspect the specification of the
model.
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51 © Cy

\/

7 Bsa
(a) ‘ {b)

FIGURE 4.8. Overidentification in the poplﬂéﬁon and the sample. (2) Population equations.
(b) Sample estimating equations. ’

Returning to the peer-influences model, suppose that a path is added from
X;t0'Ys, altering the first structural equation:

Ys = YaXi + Y52 X + Y53 X3 + BseYs t+ &7 (4.16)

There are now four structural parameters to esumate Because there are four
instrumental variables available (the exogenous’ ‘'variables X;, X,, X;, and X,),
we may derive as many estimating equations as unknowns. We shall generally-
be able to solve umquely for Gy, Cs, Css, and B56, and, therefore, the”
structural equation (4.16) is just identified. Note that we need not actually
derive the IV estimating equations in order to draw this conclusion: We may -
simply compare the number of IVs to the number of parameters to be
estimated, as in a balance sheet:

Ivs - - - Parameters

-(“credits™) (“debits”)
X . Yas1
X, Y2
X5 , ) ¥s3
X, Bss
4 4

Now imagine that'a path is added from X, to Y5 (though this ha:dly makes
substantive sense for the peer-infliences data):

Yy =y X + ¥ X, + Y3 X3+ Ysa Xy + BsYs + & (4.17)

Comparing the fumber of instrumental variables to the number of structural
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parameters to be estimated indicates that there is a deficit of IVs:

IVs Parameters
X ' ¥s1
X ¥s2
- X ' ¥s3
X4 Y54
Bss
4 5

There are five parameters to estimate, yet the pool of available instrumental
variables yields but four estimating equations. The structural equation (4.17),
therefore, is underidentified. _ ‘ '

The order condition for-identification is easily. abstracted from these exam-.
ples: For a structural equation to be identified, there must be at least as many
exogenous variables (IVs) in the model as there are parameters to estimate in.
the structural equation. : o

The Admissible-Transformation Approach® To understand why the
order condition is insufficient’ to insure the identification of a structural
equation, it is necessary to consider the equation not in isolation, but ‘in
relation to the other structural equations of the model. One way to accomplish

" this goal is to develop the relationship between the structural parameters and
the parameters of the reduced form of the model. T

In deriving the reduced form, we determined the following relation between
reduced-form and ‘structural parameters: II = —B7'T (see equation (4.4)).
Knowing the structural parameters, then, we can find the reduced-form param-
eters. It is simple to show that, in general, it.is not possible to reverse this
relation: that is, to determine the structural parameters uniquely from the
reduced form. Since the reduced form represents the directly observable
empirical relationships of the endogenous to the exogenous variables, if two
structures can give rise to the same reduced form, then it will be impossible to
choose between these alternative structures on empirical grounds alone.

Let us multiply both sides of the structural equations (4.2) by a nonsingular -
(g X g) transformation matrix T, producing a new set of equations:

TBy + TI'x = Te
. (4.18)
B*y + I'*x = ¢*
where B* = TB, T'* = TT, and ¢* = Te. Equation (4.18) only resembles a

$The general approach in this section is from Fisher (1966).
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structural-equation model, because in general each row of B* and T'* combines
parameters from different structural equations (different rows of B and I'). Yet,
the reduced form corresponding to the “pseudo structure” (4.18) is the same as
that corresponding to the “true structure” (4.2): Solving equation (4.18) for y
produces ‘

y = —(TB) " “ITx +(TB) 'Te
= —B~ITITTx + BT !Te
=-B II'x + B¢
=TIx+ 8

The true and transformed structures, therefore, are observationally indis-
tingushable (i.e., they imply the same pattern of empirical relationships among
the variables of the model).

We may, however, be able to distinguish true from transformed structures
on the basis of the prior restrictions placed on the structural equations of the
model. Suppose, for example, that some entries of I are prespecified to be zero.
Then we may rule out any parameter matrix I'* = TT that contains nonzero
entries where zeroes should appear. Following Fisher (1966), a transformation
T that produces a structure satisfying all prior restrictions placed on the model
is termed an admissible transformation. _

If we are able to show that the only admissible transformation is the
identity transformation T =1, then the structural-equation model is iden-
tified. In fact, we need not be quite so stringent, for problems of underidentifi-
cation only occur when we mix coefficients from different structural equations.
It is therefore sufficient to require that the only admissible transformations are
diagonal, multiplying each structural equation by a nonzero constant. Because
the dependent variable in an equation has a coefficient of one, we can always
recover the original structural equation by “renormalizing,” dividing through
by the same constant that we multiplied by (see footnote 4).

Before deriving a simple rule for determining whether the only admissible
transformations of a structural-equation model are diagonal, let us consider
two examples in some detail. First, we take another look at the Duncan,
Haller, and Portes peer-influences model. There are no prior restrictions on B
in this model (other than the diagonal entries of one, which we have already
taken account of), so any nonsingular transformation B* = TB is admissible
from the point of view of B. T, however, has four zero entries, and, therefore, if
T is an admissible transformation, then ' :

x = IT = y 2\l Y ~Y2 O 0
ty In 0 -0 “Yes T Yea

[ - 00 (419)
0 0 -1 Y& |
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Equation (4.19) requires that t;; = I = 0, and, thus, only diagonal transfor-
mations T are admissible. '

For a contrasting example, examine the model diagrammed in Figure 4.9.
For this model, ‘

1 —Bu O
B=1| By 1 0
0 —Bss 1
Y 0
T'= 0 0
0 ~Ys2

It is simple to show that there are nondiagonal admissible transformations that
confuse the first structural equation with the second, despite the fact that all
three structural equations of the model meet the order condition. That is,

St t, O
0 0t

is admissible because

th— taBs —tubuattn 0

B*=TB=| —infs Iy - 0
0 —t3Bss . 133
—thyyn 0
T*=TI'= 0 0
0 —15Ys2

meet the prior restrictions placed on B and T. Upon renormalizing the first

X, e

X, > Y5 - €g )

FIGURE 4.9. An underidentified nonrecursive model that meets the order condition.




246 LINEAR STRUCTURAL-EQUATION MODELS
.equation, we obtain

1118 + hi2&q

1B~ tay .o 3 1Y, o -
ty — tabBa

By — 812Pg3 ty — t2Pas
1Y, — BLY, + 0Y; — vii X, + 0X, = €

Thus, if we obtain estimates for the first structural equation, we cannot be sure
whether we have in fact estimated the structural parameters of interest or some
confused combination of parameters from the first two structural equations.
These difficulties occur because the second structural equation has zeroes in the
same places as the first (the additional zero in equation two is irrelevant when
we consider the identification of the first equation); if we take a linear
combination of the first two equations, therefore, the zeroes still appear as
specified in. the prior. restrictions on the first equation. v

These observations. suggest a relatively simple procedure for determining
whether .the only admissible transformations are diagonal. We examine each
structural equation in turn, insuring that the corresponding row of T has zeroes
except in the diagonal position. Without loss of generality, let us consider the
first structural equation of a model. Let t{ denote the first row of T. The first
structural equation is identified if and only if all entries except Iy in every
admissible t are zero. Other entries in t; may be nonzero only if linear
combinations of the other equations meet the restrictions placed on the first
structural equation. :

We collect all structural coefficients of the model in a single matrix

( A )= [B, T']. From this miatrix, extract those columns that have zeroes in
Xq+m . . - L .
thqe first row, and then delete the first row; calling the resulting matrix A,. For

example, for the Duncan, Hatler, and Portes model, we have

. \ v
A= 1 —Bse P Ys1 ~Ys2 0 _70
: = Bss 11 0 0 ~Yos T Yes

A= (~Ys Vo)

More generally, A, is of order (¢ — 1 X r;), where ¢ is, as before, the number
of equations in the model, and r, is the number of restrictions on (i.e., the
number of variables excluded from) the first structural equation. If A, is of
full-row rank (that is, if rank(A;) = ¢ — 1), then, by the definition of matrix
rank, there is no linear combination of rows equalling the zero vector: The
restrictions on the first structural equation cannot be duplicated from the other
equations of the model. In the example, this is obviously the case since unless
Ye3 = Yes = 0, Tank(A)) =1=¢g — 1 i

Note that for the rank of A, to be g — 1, A; must have at least 4 — 1
columns. This is the order condition for identification in a new guise (and,



THE IDENTIFICATION PROBLEM AND ITS SOLUTION 247

indeed, the name “order condition” refers to the column order of the A;
matrix): There must be at least as many restrictions on a structural equation as
one less than the number of -endogenous variables in the model. That this
condition is equivalent to the earlier statement of the order condition is easily
verified by comparing the number of instrumental -variables (i.e., exogenous
variables) to the potential number of unknown parameters in ‘a structural
equation:

Potential Number

Number of IVs of Parameters
m ' - m+g-—1

There are m + ¢ — 1 potential- parameters because the coefficient of the
dependent variable is fixed. at one. Thus at'least ¢ — 1 potential independent
'variables must be excluded from a structural equation to reduce the number of
parameters to or below the number of IVs:

n2(m+g-1)-—m=qg-1

The rank condition must be met, of course, not just by the first. structural
equation, but by each structural equation of the model. That is,

rank(Aj)=q— 1

for j=1,...,4. Only then are all admissible transformations diagonal. In
practice, for models of the form considered here, the rank condition will be
met if the order condition is met and if no structural equatlon duplicates the
restrictions placed on any other.

4.3.2. The Identification of Recursive and Block-Recursive Models

As we shall show presently, the.pool of instrumental variables for estimating
an equation in a recursive or block-recursive- model includes: not: only the
exogenous variables but also prior endogenous variables. Put alternatively, the
restrictions on disturbance covariances in recursive and block-recursive-models
may help to identify the models. We shall see, in fact, that all recursive models
are identified.

Recall the recursive Blau and Duncan stratlﬁcatlon model shown in Flgure
4.2, The first structural equation of 'this model is

Y, =91 X + 15 X, + & : (4-20)

This equation has two parameters to be estimated, and two instrumental
variables are available for estimation, the exogenous variables X; and X,. The
structural equation (4.20), therefore, is just identified. More generally, the first
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structural equation in a recursive model can contain only exogenous independ-
ent variables, for there are no endogenous variables causally prior to the first.
Because the exogenous variables are also available as IVs, if all exogenous
variables are included in the first equation,then the equation is just identified;
if some exogenous variables are excluded, then the first structural equation is
overidentified. ' _

The second structural equation of the Blau and Duncan model is

Yy=vpX; + BsY; + .57 (4.21)

Here, as in the first structural equation, there are two parameters to be
estimated. The exogenous variables, as always, are available as IVs. In addi-
tion, the prior endogenous variable ¥; may be used as an IV, since Y,isa
linear combination of X;, X,, and & (as given in the first structural equation -
(4.20)), each of which is uncorrelated with the disturbance of the second
structural equation, &,: Because they are exogenous, X; and X, are uncor-
related- with ¢;; & and. e; are uncorrelated because, in recursive models,
different disturbance variables are specified-to be independent. Y;, therefore, is
uncorrelated with e;. There are, then, three IVs for the structural equation
(4.21), rendering this equation overidentified. Note that, more generally, the
first endogenous variable in a recursive model is a linear combination of
exogenous variables and a disturbance, and thus may be used as an IV in
estimating the second equation of the model. This second equation, conse-
quently, is overidentified if any prior variables are excluded and just identified
otherwise. ‘ ’

Returning to our example, there are three parameters to be estimated in the
third structural equation of the Blau and Duncan model:

Y5 =¥ X; + B3 s + BssYy + & (4.22)

X; and X, may be employed as- instrumental variables because they are
exogenous. Y; is an eligible IV because it is composed of X;, X;, and &, each
of which is uncorrelated with &;.- Y, similarly, has components (X,, ¥;, and ¢,)

that are uncorrelated with &g, and is a fourth IV. The structural equation (4.22)
is consequently overidentified. :

* To generalize: Exogenous and all prior endogenous variables are eligible IVs
for estimating a structural equation in a recursive model; if all of these
variables are independent variables as well, the equation is just identified; if
one or more prior variables are excluded, the equation is overidentified.’

Strictly speaking, we should set out to show that the only admissible
transformations of a recursive model are diagonal. This may, in fact, be

°In certain cases, the causal ordering of endogenous variables in a recursive mode} is partial

rather than complete. When this happens, each of two variables may count as “prior” relative to
~ each other (i.e., uncorrelated with the disturbance in the other’s equation). See Problem 4.8(a) for
an example. :
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demonstrated by taking into account the restrictions placed on disturbance
covariances as well as those placed on structural parameters (see Problem 4.9).
Notice that in the context of recursive models, the rank condition derived in
Section 4.3.1 is sufficient but not necessary to insure the identification of a
model, for this condition fails to take account of restrictions on disturbance
covariances.

An illustrative block-recursive model was given in Figure 4.4. There are four
instrumental variables available for estimating the structural equations in the
first block of this model: X;, X,, X;, and X,. Because each equation in the first
block of the model has four parameters to be estimated, each equation is just
identified. To estimate the structural equations in the second block, the pool of
instrumental variables expands to include the endogenous variables Y5 and Yy
in the first block. This expansion occurs because Y5 and Y; may be written (in
reduced form) as linear functions of the exogenous variablés and first-block
errors, all of which are uncorrelated with the errors of the second block. Each
structural equation in the second block has five parameters to be estimated,
and therefore is overidentified. In the absence of the block-recursive restric-
tions on disturbance covariances, the second-block equations in this model
would be underidentified. :

In general, to identify a structural equation in a block-recursive model, we
may employ endogenous variables in prior blocks (along with the exogenous
variables) as IVs. A necessary and sufficient condition for identification may be
obtained by suitably modifying the rank condition:

_ rank(A%) = ¢, — 1

where A? is formed from A by deleting equations (rows) for other blocks and
by deleting endogenous variables (columns) in subsequent blocks. g; is the
number of endogenous variables in the block containing Y.

4.3.3. Restrictions on Disturbance Covariances: The General Case

The preceding section demonstrated how prior restrictions on disturbance
covariances help to identify recursive and block-recursive structural-equation
models. Restrictions of this type can also assist in identifying nonrecursive -
models, although there is not, unfortunately, a general rule (such as the order
or rank condition) to apply in these cases. Instead, each model must be
examined individually, employing, for example, the admissible-transformation
approach.

We return to the general structural-equation model transformed by a
nonsingular matrix T (repeating equation (4.18)):

TBy + TI'x = Te
B*y + I'"x = ¢*

As we pointed out earlier, for T to be an admissible transformation, B* and I'*
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must meet the prior restrictions placed on B and I'. Because &* results from a
linear transformation of e, _the covariance matrix of the transformed dis-
turbances may also be derived employing T:
' 2 =TZT o

For T to be admissible, 2% must satisfy the prior restrictions placed on Z,,
(i.e., must have zeroes in the right places). We were able to ignore 27
previously because we stipulated that there were no restrictions placed on the
disturbance covariance matrix. '

To provide an illustration, we sha]l'vex_a.minc the model shown in Figure
4.10, the structural equations of which are

(0 BE =)

(This model is adapted from Johnston, 1972: 365.) The two disturbance
variables are specified to be uncorrelated:

_ | %a 0
Zee = ( 0 "ss)
Note that the second structural equation of the mode]l would be underiden-
tified if not for the restriction oys =0. _
To show that the model is in fact identified, it is necessary to demonstrate
that only diagonal transformations are admissible. Let

£ tiy
T= 11 12 )
. In In
There are no restrictions on B, so any B* = TB will do. Because v, =0,
however, t,, = 0, for otherwise v5; = #;;0 — 11,751 # 0, making T inadmissible.

Because 0,5 = 0, the off-diagonal entries of =* must be zero. Forming this
product, we have ' s

O T
' ty Infl0 05/\0 In

2
=( 11044 11291044 )

: 2 2
1100 121044 t 12055

: Y2 e € 4

FIGURE 4.10. A nonrecursive model with restricted dis-
X, > Y; - €5 turbance covariance.
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It is clear that the off-diagonal entries are zero only if z,, = 0 (since 7;; # 0
because T is nonsingular). Thus, all admissible transformations are of the form

_' ; O

and the model is identified.

PROBLEMS -

4.8. Determine the identification status of each of the models given in
Problem 4.1.

4.9.* Using the admlss1ble-transformat10n approach, demonstrate that a recur-
sive model (i.e., a model for which B is triangular and =, is diagonal) is
necessarily 1dent1ﬁed (Hmts Employ the’ general approach used in
Section 4.3.3. Work with a relatwely simple system, such as Blau and
Duncan’s model ‘modified so ‘that all prior variables appear in each
structural equatwn the gencrahzahon to any recurswe model 1s obv10us )

4.4, ESTIMATION OF 'SfRUCTURAL—EQUATION MODELS

Having specified a structural—equaﬁon model, and having determmed that it-is
identified, we wish to estimate the parameters of the model—that is, to fit the
model to the data. If ‘each of the structural equations.of the model is just
identified, estimation is not problematic, since the instrumental-variables
estimating equations may then be solved for umque estunat@s of .the structural
parameters.

An overidentified model, however, presents. difficulties; As- we noted in
Section 4.3.1, the sample estimating equations for an overidentified structural
equation are overdetermined, even if the model is correctly specified. Recall the '
situation illustrated in Figure 4.8(b), where there are two parameters to be
estimated and three estimating equation. To obtain consistent estimators-of the
structural parameters we could delete one of the estimating equations.

Though discarding surplus estimating equations is notan .unreasonable
response to overidentification, there are at least two factors that recommend
against it. First, in the absence of a justifiable rule for determining which
estimating equation is to be deleted, we must proceed arbitrarily, causing
different investigators to obtain different estimates from the same data. Sec-
ond, the surplus of information available when a model is overidentified might
be used to improve the efficiency of estimation; discarding this information is
statls'ucally wasteful. In. this section, we shall deal first with the estimation of
nonrecursive models, and then turn to a cons1derauon of recursive and
block~recurs1ve models.
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4.4.1. Estimating Overldentified Nonrecursive Models-

There are two general approaches to estimating an overidentified structural-
equation model. One approach, called single-equation Ot limited-information
estimation, is to estimate each structural equation separately. Ordinary least
squares is an example of a single-equation method. OLS, however, is generally
 inconsistent when applied to nonrecursive models, because endogenous inde-
pendent variables are correlated with the disturbance of the structural equation
in which they appear. There are other single-equation methods that produce
consistent estimators. One such method, rwo-stage least squares (2SLS), is
developed in this section.

A second general approach, termed systems or full-information estimation,
estimates all of the parameters of the model (including the covariance matrix
of the disturbances) at once. Later in this section, we shall take up the
full-information rvrl_zaximum-likelzihoodv(FI_ML) method.

Although a lengthy comparative discussion of different estimation methods
is beyond the scope of this chapter, a. few remarks are in order. Further
summary information may be found in various sources, including Christ (1966:
464-481), Malinvaud (1970: 718-722), Kmenta (1971: 581-586), Johnston
(1972: 408—420), and Wonnacott and Wonnacott (1979: 518-521).

The asymptotic (i.e., large-sample) properties of the various estimation
methods have been ‘detérmined analytically; and the full-information methods
are asymptotically more efficient than the limited-information techniques.
Determining the small-sample properties of structural-equation estimators
analytically generally proves “infeasible, and therefore these properties have
primarily been explored empirically through “Monte-Carlo” (random-sam-
pling) simulation experiments. The disadvantage of this approach, aside from
its relative inelegance, is that conclusions may depend in an undetermined way
on the specific conditions of a Monte-Carlo study (i.e., on the models, true
parameter values, variable distributions, -and sample sizes employed in the
experiment). The random element in. Monte-Carlo. studies also introduces
statistical uncertainty. Over the course of a number of studies, however,
patterns tend to emerge. : )

To summarize the results of such studies briefly is possibly misleading. It is,
nevertheless, fair to say that overall 2SLS appears to be the best of the
limited-information methods, and FIML the best of the full-information
methods. Moreover, FIML generally is superior to 2SLS, except when the
estimated system has a misspecified equation, in which case single-equation
methods like 2SLS tend to perform relatively well. Intuitively, full-information
estimation proliferates a specification error throughout an equation system,
‘while the Limited-information approach isolates the error in a single equation.

A final point may be made with respect to OLS estimation. Though OLS is
generally inconsistent in nonrecursive models, the OLS estimator nevertheless
has smaller sampling variance than the consistent estimators. Even apart from
the possible small-sample bias of the consistent estimators, their larger sam-
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pling variance may depress their small-sample efficiency below that of OLS.
OLS estimation, therefore, cannot simply be dismissed in very small samples
on the grounds of inconsistency.' ’

Two-Stage Least Squares (2SLS) Aside from its desirable properties as’
an estimation method, 2SLS is worth studying because its rationale is relatively
simple, it is computationally straightforward and inexpensive, and it is the
method most frequently employed in practice. The 2SLS method was originally
formulated in the 1950s by Theil (cited in Theil, 1971: 452) and Basmann
(1957). We shail approach 2SLS by developing an example before proceeding
to the general case. , .

We return to the first structural equation of the Duncan, Haller, and Portes

peer-influences model (originally given in equations 4.1):
Ys = 15, X, + Y52 X + Bss¥s + €7 (4.23) -

. Recall that this structural equation is overidentified because of the exclusion of
the exogenous variables X, and X,. We therefore have four instrumental
variables but only three structural parameters to estimate. 2SLS may be
thought of as a method for reducing the number of instrumental variables to
the number of parameters. :

Aside from being uncorrelated with the error, a good instrumental variable -
should be as highly correlated as possible with the independent variables in the
equation to be estimated. We may apply this criterion individually to the
independent variables in equation (4.23). X and X, being perfectly correlated
with themselves, are therefore their own best instruments. We might choose as
an instrument for Y; the remaining exogenous variable (X, or X,) that has the
higher correlation with Yg. We can do better, however, by regressing Y on both
X, and X,, using the fitted values ¥; that result as an optimal instrument
for Y. : : ' v
" An equivalent, and uitimately ‘more convenient, result is obtained by
regressing Y, on all of the exogenous variables (X;, Xp, X;, and X,) in the
model."* That is, in the first stage of 2SLS, we fit the reduced-form relation

Y, = 1 X; + T Xp + T Xy F s Xa T O

104Small samples” employed in econometric Monte-Carlo studies are small indeed by socio-
logical standards—often in the neighborhood of 20. This is because economists frequently work
with relatively short time series rather than with cross-sectional sample surveys. A social scientist
employing a sample of several hundred or more observations almost certainly can rely on
asymptotic results, if the assumptions underlying the results (€.g.s the independence of exogenous
variables and disturbances) are realistic. :

URecall from Problem 4.7 that what is significant about a set of IVs is the subspace that they
span, not the basis selected for this subspace. In the present context, since X; and X, are included
among the set of IVs employed, it does not matter whether ¥ is defined in terms of all four X’s or

only in terms of X3 and X,; the same subspace is spanned by X, X3, and f’sbin both cases.
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obtaining (from OLS estimates of the 7’s)

A

Yo =Py X + P X, + Py X5 + Py Xy -

f’6, as a linear combination of the exogenous variables, is uncorrelated with the -

" structural error &, of equation (4.23), and, therefore, may legitimately be used
as an instrumental variable in estimating this equation.’> Moreover, Y, is as
highly correlated as possible:with ¥ while still remaining uncorrelated with e;.

In the second stage of 2SLS; we apply the IVs obtained in the first stage (the

exogenous independent variables X; and X,, and the fitted endogenous inde-
pendent variable- ¥;) to estimate the structural equation (4.23). Using an
obvious notation, we derive IV estimating equations -

S15 = Cs1Spy + Cs2S815 + BsgSis-
Sys = C51812 + Cs528x + BseSa (424)
S5 = Cs1816 + Cs3Sp + BsSes ‘

which, givéﬁ data, m_iiy be solved for 2SLS estimates of the structural par'aine-
ters. . _

The name “two-stage least squares” derives from an alternative but equiva-
lent approach employing an OLS regression in the second stage. The structural
equation (4.23) could be fit. directly by OLS but for the correlation of Y with
g,. If we substitute for Y, from the first-stage reduced-form regression, we get

Y, = v X + 'YszXz + 356_(?6 + D) + & v
=YX+ ¥ X, + BT +er ' (4.25)
Here, ef = BssDs + &7is 2 _l_vineé;,combiqation of errors, and hence is uncorre-
lated with X; and X,, which are exogenous, and with ¥;, which is a linear
combination of exogenous variables (see. footriote 12). OLS estimation, there-
fore, may justifiably be applied to equation (4.25), producing estimating
equations ,
S5 = C5181; + CspS12 + BseSig »
S5 = C51-Slg + CSp + BssSis - (4.26)
© S5 = CsiS1g + Cs385 + BseSge
Comparing the OLS estimating equations (4.26) with the IV estimating equa-
12§ depends upon the P’s, which, in turn, depend upon the structural error e; (a component of

). Y and &7, therefore, are nAo't, strictly speaking, independent. Since the P’s are consistent
estimators of the «’s, however, ¥; and &, are independent in the limit.
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tions (4.24) for the second stage, W€ need to show that Sig = S15, S = 526>
and Sgg = S In order to demonstrate the equivalence of the two approaches.
This equivalence will be proven shortly, but for the general case, t0 which we
now turn.

Let us consider the jth structural equation in a model, writing this equation
in the following format: '

y = Y B + X vt (4.27)
(nX1) (nXgq;—1) (g;—1 X1) (nXm;) (mjxl) (nX1)

The symbols used in this equation, some of which are familiar, are explained in
Table 4.1, which employs the first structural equation of the peer-influences
model as an illustration. Equation (4.27) may be 'written’;nore compactly as

B:
y = [9X] (Y; re, (4.28)
In the first stage of 2SLS, we regress the endogenous independent variables

in Y; on all of the exogenous variables in the model:

Y, = X I, + A;
(nXq;—1) (nXm) ‘(quj—l) (nxg;—1)

TABLE 4.1. Notationfora Structural Equaﬁon to be Estimated by 25LS

Symbol Meaning ) Example”
J jth structural equation 1
n . Number of observations ‘ _ o329
q; Number of included endogenous variables 2
m; Number of exogenous independent variables 2
Y Dependent variable vector . ¥
(nx1) S :
Y, Endogenous independent variable matrix Y6
(nxq;~=1) ‘
X; Exogenous independent variable matrix [x1,X2]
(nXm j) - ; .
€ Disturbance vector €
(nX1)
B; Structural parameters for endogenous (Bss)
(g;~1%1) independent variables’ .
Y; Structural parameters for €X0gENOUS (Ys1» Ys2)’
(myx1) independent variables

4aFirst equation of Duncan, Haller, and Portes ponrecursive model.
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obtaining the OLS reduced-formed estimator

[ it
| P/ = XX) XY,
and fitted values

P

’ -1
¥, = XP/ = X(XX) XY, (4.29)

In the second stage, we apply YJ and X as instrumental variables to equation
(4.28):

(b) = ‘([‘“G,"“f]’[\%xj]-)"[Y,-,X,.]'y, o

A AI -1 A’
=(Yﬁ,~ Y,-x,-) (ijj (430)
XY, XX| Xy

Alternatively, we may proceed by the regression approach, substituting
Y=Y,+D into equation (4.27):

y=(\+D)B+ Xyt

=98 + Xy, + (DB + )

- [4x)(%) +y | (@31)

where ef = DB, + ¢;. We may apply OLS to equation (4.31) because, by the
reasoning outlined earlier, Y; and X are both uncorrelated (in the limit) with

g%
g

2)- (5 RHE X))

-1

(% %)Yy )
X X%, \Xy

"It is clear that the two approaches, equations (4.30) and (4.32), produce
identical results if ‘

>
>

2%

Y,

It

7

(4.33)

>

>
X<
[
e
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To see that these equations hold, substitute Y; = YJ + D; into the left side of
each, obtaining .

%5+ D) = Y, + /D,
X(% + D) = X% + X/D;

Y, and D; are, respectively, the fitted dependent-variable matrix and the
residual matrix from an OLS regression; they are, therefore, orthogonal, since
each column of YJ lies in the X subspace, and each column of D; is orthogonal
to this subspace. For a similar reason, X; (a column subset of X) and D; are
orthogonal. Thus, Y/D; and X'D; both vanish, and the equalities in (4.33) are
demonstrated. ‘
The estimated asymptotic covariance matrix of the 2SLS estimator follows
from the observation that 2SLS is a type of instrumental-variables estimation.
We may, consequently, apply the result given in Section 4.2, equations (4.11).
In the present context, y; plays the role of the dependent variable (y, in the
general case given in @411, [Y,, X;] is the independent-variable matrix Xin
equations (4.11)), and [f"j,X-] is the matrix of instrumental variables (Z in

equations (4.11)). Straightforévard substitution produces the desired result:

e =y~ X~ b

ele;
_ i)
ng =

_— 4.34
n—gq;—m ( )

b. : R ~1/ra - A -1
%] - 53055000 X0 (X XD XIS )
This expression may be simb]jﬁed by multiplying out the‘partitioned matrices
and taking advantage of the identities given in equations (4.33):

b,
Tl = Q2

The square roots of the diagonal entries of this matrix are the standard errors
of the estimated structural coefficients, which may be used, therefore, to test
hypotheses and construct confidence intervals for individual B’s and v’s.
Although we have developed 2SLS as a two-step procedure, the first stage
(4.29) may be substituted into the second (4.30), bypassing separate calculation

Y, X,
XY, XX,




258 LINEAR STRUCTURAL-EQUATION MODELS

of the first-stage regression:

A B N
b| ’X(X’X) XY, Y/X;| [ YX(XX) Xy, “35)
cj Xy, XX X3y '

In fact, because of the location of matrix inverses in equation (4.35), every
sum-of-squares-and-products matrix in this equation may be replaced by the
corresponding sample covariance matrix:

b, S, S:18., Sy.|
.(’)=(Yf’”‘x’“" Y% (4.36)

G

-1
( Sy xSxxSxy,

Sxy

Sxy,  Sxx
where, for example, SY X = [1/(n — D]Y/X. For models with standardized
variables, the covariances in equation (4. 36) are, of course, correlations.

A correlation matrix for the peer-influences data is given in Table 4.2. (This
correlation matrix includes variables not employed in the current example, but
which will be used later.) 2SLS estimates of the standardized structural

TABLE 4.2. Correlation Matrix for Peer-Influences Data, n = 329

_ 1 2 3 4 5 6 7 8 9

2 | .6247 -

3 |.3269 .3669 : : .

4 4216 3275  .6404

5 2137 2742 1124 .0839

6 | .4105 4043 2903 2598 .1839

7 | .3240 4047 3054 2786 .0489 2220

8 2930 2407 4105 3607 0186 - .1861  .2707

9 2995 2863 5191 .5007 0782  .3355 2302 2950
10 0760 0702 2784 1988 1147  .1021 0931 —.0438 2087
1 Respondent’s occupational aspiration score

2 Respondent’s educational aspiration score

3 Best friend’s occupational aspiration score

4 Best friend’s educational aspiration score

5 Respondent’s parental aspiration

6 Respondent’s intelligence

7 Respondent’s family socio-economic status (SES)

8 Best friend’s family SES

9 Best friend’s mte]hgence
10 Best friend’s parental aspiration

Source: Duncan,: Haller; and Portes (1968:. Table 1). Reprinted from the American Journal of
Sociology by permission of the University of Chicago Press. Copyright 1968, the University of Chicago
Press. .
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parameters of the model are shown with parenthetical standard errors in
equations (4.37): »

Y, = 0403 Y+ 0272 X, + 0151 X, + 0.841E;
(0.104) °  (0.053)  (0.054)
(4.37)

Y,= 0341 Y+ 0157 X, + 0.352 X, -+ 0.805E
(0125) ° (0054) °  (0.053)

" The coefficients associated with the estimated disturbances require com- .
~ment. It is usual practice, in a standardized model, to set ‘the standard
deviation of the estimated disturbance variables to-one. Here, for example,
E} = E,/S;. By way of compensation, S;, often called a residual path, be-
comes the coefficient of E7 in the estimated structural equation.

The estimates for the peer-influences model appear generally reasonable. All
structural coefficients are positive, as expected, and corresponding coefficients
in the two structural equations are similar in ‘magnitude. It is, perhaps,
surprising that the estimated structural coefficients for peer influences, Bsg and.
Bgs, are as large as they are relative to the coefficients for intelligence (Cs; and
C,,) and for SES (Cs; and Ce3)-

Having obtained 2SLS estimates of the structural parameters of a model, we
are generally interested in estimating as well the covariances among dis-
turbances from different structural equations, if only to verify that these values
are reasonable. Equation (4.34) gives us the variance of each estimated
disturbance. Their covariances can be obtained similarly, say Sgg, = eje;/n
(disregarding degrees of freedom). It is generally simpler, however, t0 compute
the covariance matrix for the disturbances directly from structural coefficients
and from covariances of endogenous and exogenous variables. According to
the general structural-equation model (4.2), ¢ = By + I'x. Thus, since E(e)=0,

3. = E(s¢)) = E[(By + Tx)(By + )]
" = BE(yy)B + BE(yx)I" + TE(xy)B' + TE(xx)T"
= BS, B + BSyyI" + T2y B + TZxxI"

The result we are seeking follows upon substituting sample -covariances and
estimated structural coefficients for their population counterparts:

Spp = BSyyB’ + BSyyC + CSyyB' + CSxC (4.38)

Estimated disturbance correlations may be calculated from the covariances in
equation (4.38) in the usual manner; that is,
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For the Duncan, Haller, and Portes model estimated in equations (4.37), the
disturbance correlation is r, = —.476. A negative correlation between dis-
turbances makes little substantive sense in this case, for we expect similar
omitted causes of respondent’s and best friend’s aspirations. The negative
correlation between disturbances, therefore, casts doubt upon the specification
of the model. This point is developed in Gillespie and Fox (1980), and is
pursued briefly in Section 4.6.2. ,

Full-information Maximum Likelihood (FIML) It is surprising that the
full-information maximum-likelihood method of estimation (Koopmans, Rubin,
and Leipnik, 1950) antedates simpler estimation methods such as 2SLS.
Application of FIML was not generally practical, however, until electronic
computers became available to take on the formidable computational burden
imposed by the method.

The derivation of the FIML estimator follows the usual maximum-likeli-
hood approach.’* We begin with the general structural-equation model [from
equation (4.2)]

By, + T'x, = ¢ A | (4.39)
and with the following distributional assumptions regarding the errors:
e ~ N,(0,2,.)
¢;, €; independent fér i#j
X;, ¢; independent

From the formula for the multivariate-normal distribution, we have

p(e) exp(— 362 %;) (4.40)

1
@m) 12,

We cannot apply equation (4.40) directly, because the disturbance irector € is
unobservable. We may, however, use the model (4.39) to transform ¢; t0 y;,

3For an alternative approach to the derivation of the FIML estimator, see Christ (1966:
395-405). It is possible, moreover, to arrive at the same estimator by applying a heuristic
variance-minimizing criterion (Wonnacott and Wonnacott, 1979: 521-526), providing a justifica-
tion for the FIML estimator without the necessity for making the strong distributional assump-
tions required by the maximum-likelihood method. .
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treating x; as conditionally fixed and employing the Jacobian of the transfor-
mation:

 pix) = ()

&
ayi +
d(By, + I'x;)

=p(e,-)1 .

=p(8,-)|B|+
|B| .

=——* _ exp|—1(By, + I'x;)= (By, + Tx;)

oAz |
Because the n observations are independent, their joint probability density
conditional on the exogenous variables is given by the product of their
marginal probability densities:

IB|2 14 i
P(Y|X) = ———+——exp| — > ¥ (By, + I'x,)’=;(By, + I'x,)
| @27)" A2, 2 i1 (

and the logarithm of the likelihood function is

log L(B, T, Z,,) = nlog|B| ,— 55" log(27)

n
~2log|Z,| — 3 ¥, (B, + Tx,)Z;(By, + I'x))
i=1

(4.41)

Note that the joint density for X and Y is given by p(X,Y) = p(X)p(Y|X). If
the distribution of X does not depend upon the parameters B, T, and 2, then
maximizing L(B, T, Z,,) is equivalent to maximizing the joint likelihood for X
and Y.

Because of the prior restrictions on the model, some of the entries of B and
T (and possibly of 2,,) are constrained to be zero. Likewise, the diagonal
entries of B are fixed to one. Maximum-likelihood estimators of B, T', and Z,,
maximize equation (4.41) subject to these constraints. The partial derivatives of
the log likelihood with respect to the parameters are nonlinear, and therefore
equation (4.41) must be maximized numerically. This is why FIML estimation
is computationally burdensome.

As for maximum-likelihood estimation generally, the estimated asymptotic
covariance matrix for the FIML estimator may be obtained from the inverse of
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the information matrix evaluated at the estimated parameter values. Since
maximum-likelihood estimators are asymptotically normally distributed, we
may employ estimated standard errors for normal-distribution tests of the
model parameters. Moreover, for an overidentified model, the general likeli-
hood-ratio criterion yields a test of the overidentifying restrictions, as ex-
plained in Section 4.7.2. '

FIML estimates for the Duncan, Haller, and Portes model are shown in
equations (4.42): -

Y= 0237 X, + 0.176 X, + 0.398 Y+ 0.890E;
(0.053) (0.047) ~  (0.104)
(4.42)

Y, = 0219 X, + 0311 X, + 0422 Y;+ 0.847E;
(0.047) °  (0.056) = (0.131) "

These estimates are in reasonable agreement with the 2SLS estimates given in
equations (4.37). The FIML method produces standard errors for estimated
disturbance covariances, showing here that the embarrassing negative covari-
ance between E, and Ej is statistically highly significant: Sy = —0.495, with a
standard error of 0.137.

4.4.2. Estimation of Recursive and BIock—Recur_sive Models

"In examining the identification status of recursive models (Section 4.3.2), we
determined that all independent variables in a structural equation of a recur-
sive model are uncorrelated with the disturbance of the equation. We may,
therefore, consistently estimate any structural equation in a recursive model by
OLS regression. Even if prior variables have been excluded from the equation
in question, and there are consequently extra instrumental variables available,
the Gauss-Markov theorem (Section 1.2.5) assures the optimality of the OLS
estimator; by reasoning similar to that underlying 2SLS, each independent
variable is its own best instrumental variable. Moreover, it may be shown that,
for recursive models, the OLS and FIML estimators coincide (Land, 1973).

 Correlations for the Blau and Duncan stratification data are shown in Table

43. OLS estimates for the Blau and Duncan recursive model appear in

equations (4.43); standard errors are not given here because of the very large .

sample employed in Blau and Duncan’s research.

Y, = 0.310X, + 0.279X, + 0.859E¢
Y, = 0.224X, + 0.440Y; + 0.818E; (4.43)

Y, = 0.115X, + 0.394Y; + 0.281Y, + 0.753Eg
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As for the nonrecursive peer-influences model, we have standardized the
estimated disturbances, introducing. residual paths into the structural equa-
 tions. For a standardized structural equation estimated by OLS, the squared
multiple correlation R* =1 = S2 (disregarding degrees of freedom for error).
The model, therefore, accounts for 262, 33.1, and 43.3 percent of the variation
in Y3, Y, and Y5, consecutively. The estimated structural parameters are all
positive, as expected, and assume reasonable values. In discussing the specifica-
tion of the Blau and Duncan model, we were skeptical of the assumption that
¢, and g are uncorrelated. A positive correlation between these disturbances
would induce a positive correlation between Y, and &, tending to inflate Bs,.
_ This coefficient, however, is not strikingly large.

Block-recursive models may be estimated straightforwardly by IV, FIML,
2SLS, or some other applicable technique. Direct IV estimation may reason-
ably be undertaken for a just-identified structural equation; here, exogenous
and prior endogenous variables comprise the pool of available instrumental
variables. In applying FIML, we merely need to indicate the prior restrictions
on Z,, along with those on B and T. For 2SLS estimation of an equation in a

* block-recursive model, endogenous variables in prior blocks should be treated
as exogenous. . ?

A block-recursive model for the peer-influences data was: presented in
Figure 4.4, and the correlations for the variables in this model were given in
Table 4.2. 2SLS and FIML estimates for the model, along with their standard
errors, appear in Table 4.4. Because the first two structural equations are just
identified, the 2SLS estimates for these equations are the same as those
obtained by direct application of the exogenous variables as instrumental
variables. Furthermore, the 2SLS and FIML estimates for these equations are
necessarily identical. Note that the two sets of estimates are similar, and that

TABLE 4.3. Correlations for Stratification Data, n = 20,700

X X Y, Y, Y;
X, 1,000 . ~ ‘

X, 516 1.000

Y, 453 438 1.000

Y, 332 A1 538 1.000

Y, 322 405 596 541 ~1.000

X, Father’s education

X, Father’s occupational status
Y; Education

Y, First-job status

Y, 1962 occupational status

Source: Blau and Duncan (1967: 169) (see Table 1.7).



TABLE 4.4. Block-Recursive Model for the Duncan, Haller, and Portes
Peer-influences Data (Figure 4.4)
. Structural Equation for
Coefficient )
for Y Y Y; Y;
. (@) FIML Estimates
X, 0.2793 — 0.0939 —
(0.0559)“ (0.0397)
X, 0.1535 0.0772 0.1865 —0.0470 -4
(0.0559) (0.0599) (0.0462) (0.0535) 3
X5 0.0843 0.2015 - —0.0398 0.0697
(0.0672) €0.0553) - (0.0491) - (0.0480)
X, — 03574 —_ 0.1589.
(0.0567) . : (0.0436)
Y; — 0.2819 0.4502 —
(0.1590) (0.0518)
Y 0.2804 — — 0.4202
(0.1362) (0.0522)
Y, — — — 0.3506 -
(0.0900)
Y; — ' — 0.2235 —
(0.0875)
) : ... (b) 2SLS Estimates
X; -0.2793 o -0.1391 —
» (0.0563) (0.0475) :
X, 0.1535 00772 0.1864 —0.0428
(0.0562) (0.0603) (0.0470) (0.0544)
X; 0.0843 0.2105 -0.0367 0.0707 :
(0.0676) (0.0556) (0.0499) (0.0489) °
X, — - 03574 — 0.1825 :
: (0.0571) (0.0522) -
Y5 — 0.2819 . 0.4034 — 3
(0.1600) _ (0.0554)
Y 0.2804 — — 0.4063
(0.1371) (0.0576)
Y, — — — 0.3367
4 (0.0910)
Y, — — 0.2078 —
(0.0876)

4Standard errors in parentheses.

264
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the unreasonable negative correlation between estimated disturbances appears
in this model as well.

PROBLEMS

4.10.

- 4.11.
4.12.

4.13.

4.14.

Indicate how you would estimate each structural-equation model
specified in Problem 4.1. . - .

Data for Rindfuss, Bumpass, and St. John’s fertility model (Problem
4.2) are given in Table 4.5. Fit the model to these data using an
appropriate estimation method. Comment on the results.

Table 4.6 shows a covariance matrix among the variables in Berk and
Berk’s model for the division of household labor (Problerh 4.3). Use
these covariances to estimate the model.

The correlations in Table 4.7 are for non-black men in the experienced
civilian labor force, who were of non-farm background and 35-44 years
old in 1962. Use these correlations to estimate Duncan, Featherman,
and Duncan’s stratification model (Problem 4.4).

The covariances in Table 4.8 were calculated from data presented by
Lincoln. Using these covariances, estimate Lincoln’s model for strike
activity in metropolitan areas (Problem 4.5).

TABLE 4.5. Covariances for Rindfuss, Bumpass, and St. John’s

Fertility Data
X1 X2 X Xa Xs X Xq Xa
iﬁ 456.6769 R : i
% 20.9201 0.0894
/‘} -15.8253 0.1416 9.2112
4 -3.2uk2 0.0124 0.3908 0.2209
# -1.3205 0.0451 0.2181 0.0491 0.2294
6 -0.4631 0.0174 -0.0458 -0.0055 0.0132 0.1498
X2 0.4768 -0.0191 0.0179 Z0.0205  -0.0589  -0.0085 0.1772 ]
Xs -0.3143 0.0031 0.0291 -0.0096 -0.0018 0.0089 -0.0014 0.1170
X9 0.2356 0.0031 0.0018 =0.0045 ~0.0039 0.0021 -~0.0003 0.0009
Y10 18.6603 . ~0.1567 ~2.3493 «0.2052 -0.2385 -0.1434 ~0.0119 -0.1330
i 16.2133 -0.2305 ~1.4237 ~0.2262 -0.3458 0.1752 0.1683 -0.1702
Mean 30.209 0.099 3889 0330 0.357 0183 0.231 0.136
Xo Y10 i
Xy 0.0888
Yo 0.0267 5.5696
1 0.2626 3.6580 16.6382
Mean 0.099 11.595 22012

Source: Adapted with permission from Rindfuss, Bumpass, and St. John (1980: 436, 445).



TABLE 4.6. ' Covariances for Berk and Berk’'s Data on the Division of

Household Labor
X Xz X; X, L Xs Xs X, Xy
,}\? 0.01440
% -0.00288 0.02250
¥ -0.00898  0.00382 0.02890
7 -0.00664 0.01226 0.00538 0.06946
f,s . -0.01673  0.02214 0.00348 0.05079 0.16810
6 -0.00433  0.00085 0.00807 0.00300 -0.00779 0.03610
X7 0.00281- -0.00135 -0.00520 0.00019 -0.00148 -0.00137 0.03240
Xs 0.00228 0.00028 -0.00484 -0.00501 ~0.00779 -0.00144 0.03610
f‘(; -0.00114 0.00456 -0.00420 0.00015 0.00234 ~0.00144 0.01444
o 0.00158 0.00033 -0.00636 - ~0.00638 0.00054 -0.00167 0.00334
» 0.00540 0.00225 ~0.01122 =0.00949 ~0.00984 -0.00342 0.01254
Xiz 0.00437 -0.00195 -0.00707 =-0.00274 -0.00426 .  -0.00247 0.00296 .
B 0.06754  0.19698 -0.52622  =0.09889 0.23075 0.03564 -0.33768 0.32080 .
» -0.04208 -0.00928 0.01403 0.00815 0.04229 0.00784 -0.00743  -0.01960
¥ -0.00360 0.01200  -0.00680 0.02504 0.06355 -0.00570 0.00180 ,-0.00066
e -0.00027 -0.00270 0.00688 -0.01898 -0.03321 0.01026 0.00162° -0.00513
¥ -0.00730 0.01104 0.00653 0.01434 0.01443 0.00669 ~-0.00346 -0.00426
e -0.01214  -0.00828 0.03284 0.00242 -0.00189 0.01049 -0.00994  ~0.01136
¥ -0.00836 =-0.00062 0.02927 0.00756 0.00336 0.00234 -0.00664 -0.00234
20 -0.00936 -0.00526 0.01392 0.00411 0.00799 - 0.00370 ~0.00632 -0.00741
pl ~0.01426 =0.00648 0.02570 0.00474 -0.00074 0.00479 -0.00518 -0.00616
-0.02534  0.05472 -0.01958 0.06072 0.17318 ~ 0.02189 0.00207 0.00730
23 -0.01732  0.00936 0.02254 0.00925 0.00320 0.00889 -0.00632 =0.00741
Mean 0.84 0.21 "0.16 0.49 021 0.04 0.03 0.04
Xy X10 Xi X2 X3 X14 Xis X6
Xy 0.03610
Xi0 -0.00167  0.04840
1 0.00684  0.00066 0.09000
2 -0.00247 0.00172  -0.00702 0.06760
3 0.44555 0.39208 0.78792 . 0.48776 87.98440
4 -0.02352 -0.02042 -0.00309 -0.01609 -0.29023 1.06372
5 -0.00095  0.01100 0.00600 0.02340 1.31320 0.10829 0.25000
6 -0.00513 -0..00891 0.00945  -0.00936 -0.21105 0.06962 -0.12825 0.20250
7 -0.00426 0.00563 -0.01152 0.00250 0.15008 -0.00990 0.00960 -0.00576
8 -0.00524 -0.00911  -0.02346 - =0.01555 -0.86296 0.00474 -0.02760 0.01863
9 . |-0.00779 -0.01082 -0.02091 ~0.01492 20.07692 0.02960 - ~0.02460 0.02583
7 -0.0074%1 -0.00858  -0.01872 =0.01318 -1.06088 0.01609 -0.03510  -0.00035
” -0.00616 -0.00792 -0.01512  -0.00562 -0.97927 . 0.0u4827 ~0.02700 0.02430
22 0.01094  0.02112 0.08064 0.02995 3.60192 0.79209 0.53760 ~0.01728
Y2 -0.00741 -0.00944. 0.01872  =0.00811 -0.43898 0.06436 -0.00390 -0.00035
Mean 0.03 0.05 - 010 0.07 59.28 . 1.75 0.44 0.29
X7 - Xis X9 X20 Yz - Y Y23
f‘(}-, 0.10240
xxa‘ 0.01619 0.21160
B0 0.00262 0.01320 0.16810
T2 ~0.00499 0.05203 - =-0.00160 0.15210 B
1 0.00346 0.01325 0.02066 0.00842 0.12960
v 0.00614 -0.04416  -0.11808 -0.06739 -0.04147 3.68640
Y;';z 0.05990 0.03050 0.01919 0.02282 0.00842 0.00749 0.15210
Mean . 0.11 0.29 0.27 0.19 0.16 494 019

Source: Reprinted from Richard A. Berk and Sarah Fenstermaker Berk, “A Simultaneous Eduation
Model for the Division of Household Labor,” Sociological Methods and Research, Vol. 6, No. 4 (May
1978), pp. 431-468, with permission of Sage Publications, Inc.
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TABLE 4.7. Duncan, Featherman, and Duncan’s Stratification Data

X, X, X, Y; Y;
X, 1.0000 .
X, 0.5300 1.0000
X, ~0.2871 —0.2476 1.0000
Y, 0.4048 0.4341 ~0.3311 1.0000
Y, 0.3194 03899 —02751 0.6426 1.0000
Y, 02332 0.2587 ~0.1752 0.3759 0.4418 1.0000

Source: Reprinted with permission from Duncan, Featherman, and Duncan (1972: Table 3.1).

TABLE 4.8. Covariances for Lincoln’s Strike-Activity Data

X X X; X4 ¥s Y6 ()
X, [0007744
X, | 0.000635 0.000400
X; 0.052401 0.005077  1.065024
X, 0.006624 0.001471  0.066069 0.037636
Ys 0.054564 0.012024 . 0.823108 0.137249 1.809025
Ys 0.084675 0.015990  1.131609 0.171958 2.025220 2.496400
Y, 0.103616 0.019572  1.325756 0.184820 1.969703 . 2.567911. .2.989441

Mean 0.509 0.752 12332 0.649 5009  6.182 - 8.832

Source: Adapted with permission from Lincoln (1978: 208).

4.5. PATH ANALYSIS OF RECURSIVE MODELS:
CAUSAL INFERENCE AND DATA ANALYSIS

Path analysis is often taken to be synonymous with structural-equation model-
ing. We shall use the term in a more literal and delimited sense to mean the
decomposition of statistical relationships between pairs of variables into causal
and noncausal components. '

In data analysis generally, when we assess the causal impact of one variable
on another, we are motivated to control for some third variable or set of
variables (in the absence of interaction effects) in two substantively different
contexts: (1) the third variable (say, Z) intervenes causally between the other
two (say, X and Y); (2) the third variable is a common prior cause of the other
two. These two contrasting situations are illustrated in Figure 4.11. The broken
arrows in this figure indicate that, in either causal structure, X may or may not
exert a direct impact on Y.

Let us suppose, for the moment, that the direct effect is absent or negligible.
It is perhaps surprising, but nonetheless true, that our statistical expectations
in the two situations are identical: In both cases, the partial relationship
between X and Y vanishes when we control for Z. Although the observable
consequences of the two causal schemes are, then, identical, their interpretation
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is importantly different: In the first case we have explained the mechanism
according to which X affects Y (that is, through the intervening variable Z),
while in the second case we have explained. away the empirical association
between X and Y as “spurious” (that is, due to the common prior cause Z, not
to the effect of X on Y).

It is instructive to examine the causal schemes in Figure 4.11 in an explicit
structural-equation setting. In each case, suppose that the structure is recur-
sive; then the equation for Y is

Y=8X+BZ+e (4.44)

Here we use B’s for structural coefficients despite the fact that X is exogenous
in the first model and Z is exogenous in the second. Now imagine that instead
of fitting equation (4.44), we fit

' Y=8X+¢ (4.45)

where e’. = ¢ + B,Z. Including Z in the error will cause our OLS estimator of
B, to be biased, since X and Z are correlated. That is,

. o o '
plim B, = 'o‘g‘ =B+ ﬁz;ﬁ (4.46)
XX Xx

1f, however, Z intervenes causally between X and Y [Figure 4.11(a)), the “bias”
in equation (4.46) is simply the indirect effect of X on Y through Z. (Note that
0xz/0xx is the coefficient for the simple regression of Z on X; since X is
causally prior to Z, this coefficient represents the effect of X on Z.) In other
words, fitting equation (4.45) in place of equation (4.44), failing to control for
an intervening variable, produces correct, albeit simplified; conclusions. In
contrast, if Z is causally prior to both X and Y, then the bias term in equation
(4.46) represents a spurious source of association between X and Y. To fail to
control for a common antecedent cause, therefore, is to commit an error of
causal inference. '

Two important related conclusions may be drawn from this discussion.
First, we cannot expect our data to mediate issues of causal priority, since very
different causal structures have the same observable implications. Second, the
conclusions that we draw from a data analysis depend centrally on the causal
relations that are assumed to hold among the “independent” variables in the
analysis. v

" In introducing structural-equation models to sociologists, Duncan (1966)
argued that one of the strengths of the method “ is that it produces a calculus

X ——————y

-_ijm\—ﬂ ‘z//

(a) (b)
FIGURE 4.11. Two causal structuresﬁ (a) Intervening variable. (b) Common prior cause.
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for indirect effects.” This topic has been taken up by a number of researchers,
including Finney (1972), Lewis-Beck (1974), Alwin and Hauser (1975), Lewis-
Beck and Mohr (1976), Greene (1977), Fox (1980), and Sobel (1982). The
approach adopted here is from Fox (1980). There has been some discussion of
path-analytic decompositions for nonrecursive models (Lewis-Beck and Mohr,
1976; Heise, 1975; Fox, 1980), but we shall limit consideration to recursive
models. Although decompositional methods have typically been applied to
standardized models, we shall develop the more general unstandardized case.

We begin by noting that a structural-equation model implies a set of
covariances among the endogenous variables of the model, and between
endogenous and exogenous variables. These covariances may be derived by the
now familiar expectation method. Multiplying the structural equations (4.2)
through on the right by x’ and taking expectations, we get

BE(yx') + TE(xx') = E(ex’)
BS,y+ ISy =0 (4.47)
Syx=—BIIZyy
Similarly,
Syy = E(yy)
= E[(-B~'Tx + B %)(—B~'Tx + B~"¢)’]
=B IS, "By + B2 (B7!) (4.48)
The entries of Syx and =,y are shown in scalar"form for the Blau and
Duncan stratification model (Figure 4.2) in equations (4.49):
013 = Y3101 + Y3012
033 = ¥31012 T ¥32022
014 = Y012 T Bia¥n1011 + Bus¥n01
O = Ya292 + Bus¥n012 + Bis¥an0n
O34 = Yar¥31012 + Ya¥52022 + Bas03
015 = Y2012 + Bsa¥s0n + Bss¥301
+BsaYar012 + BsaBus¥non t+ BsaBas¥s0i (4.49)
025 = Y520 + Bss¥31012 + Bss¥5202
+ Bss¥inO2 + BsaBisTn01z + BsaBasvndn
035 = Ys2¥51012 T+ Ys2¥32022 + Bs3033
+BsaYar Y1012 + BsaYar¥s2022 + BsaBus0ss
045 = Ys2Yar0n2 T Y52 Bas¥n1012 + ¥52Be3¥3202

+ Bs3¥a2012 + Bss¥ar¥s202 t+ BsaBaz0ss + Bsa0us
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Note that we have not written down expressions for the variances (033, 044, and
0s5) of the endogenous variables, nor have we substituted for these variances
when they appear on the right-hand side of the equations. The equations in
(4.49) are obtained by multiplying each structural equation of the model by all
prior variables, taking expectations, and successively substituting for all covari-
ances involving ‘an endogenous variable, until only structural ‘parameters,
exogenous covariances, and variances appear on the right-hand side. To
decompose 0,5, for instance, we proceed as follows: ’

E(X1Ys) = 'YszE(Xle) + Bs,_sE(X1Y3) + /354E(X1Y4)
015 = Y5012 + Bs3013 + Bsa01s
= Y500, + Bs3 (Y1011 + ¥12012) + Bsa(Ya012 + Bu¥aiou + Bis¥52012)
= Y5012 + Bs3¥31011 + Bsa¥s013 + Bsa¥ar012 + BsaBas¥non + BsaBus¥nOr

Dividing each covariance in equations (4.49) by the variance of the causally
prior variable produces the population slope for the simple linear regression of
each endogenous variable on each prior variable. For example, dividing 0,5 by
0,5, and o35 by 033, we obtain

035 012
Bsp =7~ = Ys2 T /353731;_ + Bs3Ya
. 2 o)

o
+BsaYin + 554343731;:_2 + BsuBuYn
(4.50)

[}

0. O

s _ [4P) -]

Bsy =5 = Yatag * YaYu, t Bss
33 33 33

012 O
+ Bs4Yar a1 . + 554742'7320_ + Bs4Bas
33 33

These simple-regression or “gross” slopes measure (in Goldberger’s, 1973,
terminology) the empirical association between each pair of variables.
Equations (4.50) illustrate how a gross slope may be decomposed into path
components of three general types: (1) a direct effect, represented by a '
structural coefficient; (2) indirect effects, given by products of -structural
coefficients along a path linking a prior variable to an endogenous variable;
and (3) noncausal components. For the association between an exogenous and
endogenous variable, the noncausal components are termed unanalyzed, be-
cause they depend upon covariances among exogenous variables, for which a
causal ordering is not distinguished. The noncausal components of the associa-
tion between two endogenous variables are termed spurious, because they
depend upon correlated causes of, or causes common to, both variables.
Examples of the various sorts of components are given in Figure 4.12.



PATH ANALYSIS OF RECURSIVE MODELS 27

In the sample, we may estimate model-implied covariances by substituting
for the population quantities appearing in equations (4.47) and (4.48):
St, = —B'CSyy
‘ (4.51)
Sty = B 1CSxC(B™1) + B 'S (B!
S%y and S}y are starred because, in an overidentified model, they may differ
from covariances calculated directly from the data (i.e., Syx =11 /(n = 1DY'X
and Syy=[1/(n— DIY'Y). In a recursive model, B and C are obtained by
OLS regression, and Sgg is diagonal. Sample model-implied gross slopes are
then given by

M3y = ShVx!
M3y = S?’YV¢_1

where Vy = diag(Sxx) and V¥ = diag(S%v)-
Let us denote by Eyx and Eyy, respectively, the matrices of total effects
(direct and indirect) of the exogenous on the endogenous variables, and of the

Prior Variable
Exogenous Endogenous
Gross slope Psy = 0p5/033 P53 = 035/033
Type of Component
(1) Direct effect Y52 Bs
: el O B,
(2) Indirect effect BssYa BssBa

,-Y-Y Lh-oY- Y;
(3) Noncausal

(a) Unanalyzed Bs3Y31912/ 922 -
X - Y- ¥s
(x,

(b) Spurious — Y¥52Y32022/ 933
. /}'3

(i) Common prior cause X,

Ny,
5
. Correlated pri D (g £
(i) Correlated prior causes X, - ¥,
¥52Y31012/ %33

FIGURE 4.12. Examples of path components from the Blau and Duncan model. (Adapted from
Fox, 1980: Figure 2.)
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endogenous variables on each other. Fox (1980) shows that'*
E YX = = B -1 C
EYY = B_l - I q

Notice that Eyy is simply the reduced-form coefficient matrix obtained from
the estimated structural parameters. Noncausal components may be calculated
by subtraction:

Nyyx=M3x — Eyx
Nyy=M3y - Eyy

where Ny and Nyy are matrices of unanalyzed and spurious components,
respectively. In a recursive model, Eyy is lower triangular (2 later variable
cannot affect a causally prior one); thus, the upper triangle of M3y is
necessarily wholly spurious and normally would not be shown.

Direct effects are given by the structural coefficients themselves:

Dyy=—C
Dyy=-(B-1)=1,—-B
Indirect effects follow by subtraction:
Iyx =Eyx — Dyx.
Iyy=Eyy — Dyy

An effect analysis for the standardized Blau and Duncan model appears in
Table 4.9. (In applying the results of this section to a standardized model, it is
merely necessary to substitute correlations for covariances.) Some.of the
information in Table 4.9 has been reorganized in Table 4.10 to show the
sources of association between each prior variable in the Blau and Duncan
model and the final endogenous variable, 1962 occupation, ¥s. The last column
in the table, labeled B*, gives the standardized partial regression coefficients
for the regression of Y; on all prior variables; although this regression does not
follow from the Blau and Duncan model, which sets ys; = 0 a priori, we shall
shortly have occasion to make reference to these coefficients. Note, for the
present, that the regression coefficients in the last column of the table are

4Fox treats the structural-equation model as a directed network, with the value matrix of the
network given by the structural coefficients of the model. Paths are traced by powering the value
matrix, and effects are determined by summing the matrix powers, yielding the results given here
after some algebraic manipulation.
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nearly identical with the corresponding direct effects (obtained by regressing Ys
on X,, Y,, and Y, but not X;), suggesting that the restriction ys; = 0 is
reasonable. '

A good deal might be said about Table 4.10, but we wish to use the results
in this table to illustrate just two important points. First, the fact that a prior
variable has negligible direct effects does not necessarily mean that it is
causally unimportant. Father’s education (X,), for example, has no direct
effect on Y, but it has nontrivial indirect effects. Likewise, the indirect effects
of father’s occupation (X,) on Y5 exceed the direct effects. Second, and in
contrast to the first point, the fact that two variables have a strong empirical
association does not imply that one exerts a strong causal impact on the other.
For example, the implied slope relating ¥s to first job (Y,) is quite large, but
nearly half of this association is spurious; indeed, in this case, the assumption
that the disturbances ¢, and e, are uncorrelated is questionable (as we have
noted), and even the direct-effect estimate Bs, is probably inflated.

These points are not without consequence: Suppose that a naive investigator
approaches the Blau and Duncan stratification data by regressing ¥; on X, X5,
Y;, and Y,, as shown in‘the final column of Table 4.10. In light of the small
(negative!) coefficient for X;, he or she might conclude that father’s education
has no impact on son’s eventual occupational status. Because 1; and Y,
intervene between X; and Ys, however, such a conclusion would be misleading:

TABLE 4.9. Effect Analysis for the Blau and Duncan Model

¥x X X, ¥r Y, Y, Ys

Y, 0.454° 0.439¢ Y, 1.001¢

Y, 0.315 0.417° Y, 0.5394 1.000¢

Y, 0.327 0.405¢ Y 0.596° 0.541¢ 1.001°
Dyx X, X; Dyy ¢ Y, ¥;
Y, 0.310 0.279 Y,

Y, 0.0 0.224 Y, 0.440 :

Y 0.0 0.115 Y, 0.394 0.281

Iyx X X; Iyy be Y, Y5
R 0.0 0.0 Y,

Y, 0.136 0.123 Y, 0.0

Y, 0.161 0.207 Y, 0.124 0.0

Nyx X X, Nyy Y; Y, s
Y, 0.144 10.160 Y,

Y, 0.179 0.070 Y, 0.098

Y, 0.166 0.083 Y, 0.078 0.260

Source: Fox (1980: Table 1).
~ 9Necessarily equal to observed value (within rounding error).
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TABLE 4.10. Effect Analysis for Relationships of Prior Variables With
Occupation in 1962 (¥;), Blau and Duncan Model

‘ ‘ Multiple

Prior Implied  Direct Indirect Total Regression
Variable ~ Slope Effect Effect Effect  Noncausal Slope
J M Dy, I, - Ey Ns; B}
X,: Father’s

education 0.327 0.0 0.161 0.161 0.166 —-0.014
X,: Father’s ‘ v : :

occupation 0405 0115 0.207 0.322 0.083 0.121
Y,: Education 0.596 0.394 0.124 0.518 0.078 0.398
Y,: First job - 0541 0.281 0.0 0.281 0.260 0.281

Source: *Adapted from Fox (1980: Table 2). ‘

Indirect effects transmitted tarough Y; and Y, are ignored. In contrast, the
reduction in the relationship between Y, and Y; when X, X, and Y, are
controlled is properly interpreted as reflecting spurious sources of association.

Proper interpretation, therefore, depends crucially upon an explicit or implicit
causal model.

PROBLEMS

4.15. Perform a path analysis for (a) the standardized Duncan, Featherman,
and Duncan model estimated in Problem 4.13; and (b) the unstandard-
ized Lincoln model estimated'in Problem 414,

4.16. In light of the material presented in this section, what are the risks for
causal interpretation of controlling for “all relevant factors” in examin-
ing the relationship between two variables?

4.6. LATENT VARIABLES IN ST! RUCTURAL-EQUATION MODELS

The recent literature on latent variables in structural-equation models repre-
sents a confluence of work in several disciplines (see Goldberger, 1971, 1972;
Griliches, 1977): in economics, on measurement errors in structural-equation
and regression models; in psychology, on factor analysis and test theory; in
biology, on path analysis; and in sociology, on constructs and their indicators.
Sociologists also deserve credit for many of the applications of latent-variable
models, and for an interest in integrating the several streams of work.

Latent variables (also called unobserved variables, true variables, factors, and
constructs) arise for several related reasons: (1) Our measurements, even of
relatively straightforward quantities, such as income and education, are imper-
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fect. That is, observed variables generally have a measurement-error compo-
nent. If this component is relatively large, it may be important to take it
explicitly into account when we estimate structural relations, as will be shown
in this section. (2) A variable appearing in a structural-equation model may be
an abstract construct, such as racial prejudice, which is not directly observable.
The construct may, however, have an observable effect, or indicator, and,
indeed, it is often the case that multiple indicators are available. In general,
however, no indicator is perfect; that is, each contains a measurement-error
component. (3) Just as a construct may have observable indicators without
itself being observable, likewise a construct may have one or more observable
causes. Racial prejudice, for example, may be affected by education.

Social scientists frequently employ multiple indicators to construct com-

posite scales prior to undertaking model building. While this strategy is
reasonable, there are advantages to combining the processes of scale and model
construction. First, a structural model may contribute to the definition of
better scales, employing multiple indicators in a more efficient fashion. Second,
taking measurement error into account explicitly may improve our estimates of
structural parameters. As we shall see, however, multiple indicators and
measurement errors cannot be included in a structural-equation model in a
haphazard fashion. To build identified models, we have to make careful
specifications that incorporate strong assumptions about the behavior of
measurement errors. Although this is often a difficult undertaking, the alterna-
tive of ignoring errors in measurement can distort our findings.
" The construction of structural-equation models with latent variables is a
complex subject that we shall only be able to take up briefly here. Among the
growing literature in this area, Duncan (1975: Ch. 9-10) presents a clear
introductory treatment; a number of important papers appear in volumes
edited by Goldberger and Duncan (1973) and by Aigner and Goldberger
(1977), each of which contains extensive bibliographies. The LISREL computer
program manual (Joreskog and Sorbom, 1978, 1981) is also a valuable source
(see Section 4.6.2).

4.6.1. Consequences of Random Measurement Error

In this section, we trace the consequences of random measurement error, prior
to introducing a general model that accommodates latent variables in the next
section. We determine the implications of measurement error for our usual.
estimators of structural parameters, and show how measurement error may be
explicitly taken into account in the process of estimation. We proceed by
‘examining three simple structural-equation models. Additional examples of
this type may be found in Duncan (1975: Chapters 9-10), to which the
exposition in this section is indebted.

Consider first the model shown in Figure 4.13. The notational conventions
employed in this diagram anticipate the usage that we shall adopt in Section
" 4.6.2, and require some comment. The X’s and Y’s, as before in this chapter,
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represent directly observed variables in ‘mean-deviation form. In the present
model, the X ’s are exogenous variables, assumed to be measured without error,
and the Y’s are fallible indicators of latent endogenous variables. The latent
endogenous variables are symbolized by 7’s. {’s are structural disturbances,
while &’s represent measurement eIrors in the endogenous indicators. Covari-
ances are represented by o’s. (Later on (in Section 4.6.2), we shall introduce
additional notation for covariances among unobserved variables.)

The model in Figure 4.13 may conveniently be divided into two parts: First,
there is the, structural submodel:

ns = ¥ X1 T Bsgne + §
(4.52)
Mg = Y2 Xo T Bess T+ $s

We make the usual distributional assumptions about the structural dis-
turbances, and scale the latent variables so that they have zero expectations.
Second, there is the measurement submodel:

n=ns+¢g

Y,=m6t &0 .

We assume that the measurement erTors, & and &, are “well behaved,” that is,
each & has an expectation of zero and is independent of all other variables in

/
Y,
¥ /
X, = —- g $7
012 Bes| |Bes 078
X M. <
2 V62 e %
Y,
€10

FIGURE4.13. A structural-equation model in which the éndogenous variables are measured with
€error. . '
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the system, save the indicator with which it is associated. In other words, the
measurement errors are random,” not systematic.15

One way of approaching latent-variable models is to eliminate the latent
variables from the structural equations, substituting for these variables by
employing the relations specified in the measurement submodel. This approach
is particularly fruitful for our current purpose of determining the consequences
of ignoring measurement error in the endogenous variables. We shall work -
with the first structural equation in (4.52), exploiting the symmetry of the
model. Substituting for 75 and 7, we get

(v; - gg) = Y X1 T+ Bss(Y4 —&g) +§&

which we may rewrite as
Y, = vaX; + Bss¥a T 87 (4.53)

where {4 = {7 + & — Bssero- In effect, we merge the measurement eIrors of the
endogenous indicators with the structural disturbance. Equation (4.53) may be
estimated in the usual manner, because our instrumental variables, X, and X;,
are uncorrelated not only with the structural disturbance §; but also with the
measurement errors & and g, and consequently with the composite dis-
turbance {7. ]

This result is general: In a ponrecursive model, with no disturbance-covari-
ance restrictions, we may safely ignore random measurement error in the
endogenous variables for purposes of estimating structural parameters of the
model, so long as the exogenous variables are measured without error.

For a contrasting example, we shall examine the model in Figure 4.14. The
structural equations for this model are :

Y, = Yashs T Y X2 T $7 .

(4.54)
Y = ¥53Xs + Bsa¥a $s -
and the measurement-submodel equation is
X, =&+ 0 (4.55)

Here, X is a fallible indicator, with random measurement error 8y, of the
latent exogenous variable &, Proceeding as before, let us substitute for £ in
the first structural equation: o

Y, = Yas (X1 — 8) + Y2 X2 + &
= Y Xy + Y2 Xo + §7 (4.56)
15Under certain circumstances, it is possible to estimate models specifying measurement errors

that are correlated with each other. The general model developed in Section 4.6.2 permits such a
specification.
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G> i
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FIGURE 4.14. A structural-equation mode] in which an exogenous variable is measured with’
error. ‘

where {7 = §; — Y460s- ‘ :
Multiplying equation (4.56) through by X; and X,, and taking expectations,
we get
014 = Yas011 T Ya2012 — Ya6099
_ (4.57)
02 = YasO12 T Ya20n2

Note that E(X,{) = —Ya0s because X, is the sum of £ and &, both of
which are uncorrelated with {,, and because 0,5 = 04y due to the uncorrelation
_of 8, and &. Similarly, E(X,{7) = 0 because X, is uncorrelated with both {;
and 8. Equations (4.57) may be solved for the structural parameters Y4 and
Y4; We find it convenient to write the solution in the following manner (after
Duncan, 1975: 120): ‘ : :

01402 — 0120

Yag = T
01102 — 013 — 0Ogg0p (4.58)
_ 0110y — 015014 . Y4691299
Ya2 = — 2 2
011022 ~ 012 011022 — 012

Imagine, now, that we make the mistake of treating X; as if it were
measured without error. In this instance, we would attempt to estimate the first
structural equation by OLS, since both independent variables, X; and X,, are
“exogenous.” In other words, we would apply X; and X; as instrumental
variables, wrongly setting oy in equations (4.58) to zero. The population
analog of the OLS estimator of v, then, is given by

, _ 01409 — 0130y
Yas = — 5

2
011023 — 012
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The denominator of v, is necessarily positive. Since the factor missing from
the denominator of Yj, (i.6., —0gg0y) is necessarily negative, vi is biased
towards zero. In general, ignoring measurement error in an exogenous inde-
pendent variable tends to attenuate its coefficient (although the combined
effects of measurement errors in several exogenous independent variables are
indeterminate for the individual coefficients—see the next paragraph).

The population analog of the OLS estimator of vy, is

;= 91%a T 912014
Ya2 = 2
: 011022 ~ 912

Put alternatively, vj, = Y4, + bias, where the sign of the bias term depends
upon the signs of v, and oy,. In general, if an exogenous independent variable
is measured with error, ignoring that error will have an indeterminate effect on
the coefficients of other independent variables in the structural equation.

In the present example, X; should not be used as an IV for estimating the
first structural equation. Note, however, that X; is eligible as an IV for
purposes of estimating the second structural equation. Because &y, the measure-
“ment-error component of X, is uncorrelated with all other variables in the’
system, the covariance of X; with any other variable is the same as the
covariance of £, with that variable; for example, multiplying equation (4.55) by
Y, and taking expectations produces ‘

014 = Oz T Og9 = Ogs

Although we cannot legitimately estimate the first structural equation in
model (4.54) by OLS, this equation is identified because both X, and X; are
available as IVs: Each of these variables is uncorrelated. with {7 in equation
(4.56). Note that the first structural equation would ordinarily be overiden-
tified, but the overidentifying restriction has been “consumed” by the measure-
ment error in X;. It is often the case that strategically placed overidentifying
structural restrictions may serve to identify a model with a measurement-€rror
component. ‘ . :

In the current example, it is also possible to estimate the measurement-error
variance, o4, along with the true-score variance, g Squaring the measure-
ment-submodel equation (4.55), and taking expectations, we obtain

0y = Ogg + Ogg (4.59)
due to the uncorrelation of £, and 8,. From equation (4.57) we have

Y4011 T Ya2012 — 014

The o’s on the right-hand side of equation (4.60) may be estimated directly
from sample data, and we have already seen that we can obtain IV estimates of
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the structural parameters v, and v,,. With an estimate of 0y in hand, we may
estimate o by subtraction, using equation (4.59). For this model, then, the
overidentifying restriction on the first structural equation not only permits us
to estimate the structural parameters of the model, but also serves to identify
the measurement submodel. Incidentally, notice that in the previous example
(Figure 4.13), the variances of the measurement errors cannot be separated
from the variances of the structural disturbances, rendering the measurement -
submodel (but not the structural parameters) underidentified. .

The model shown in Figure 4.15 provides us with a third and final example,
which incorporates multiple indicators X, and X, of a latent exogenous
variable &,. As before, we assume that the random measurement errors 8y and
8,, are well behaved—that is, have zero expectations, are uncorrelated with
each other, and are uncorrelated with the other variables in the model except
the indicators with which they are associated. The model consists of two
structural equations, '

Y, = Yasbs T+ Bus¥s + &5
Y, =v3X; + /354Y4' + $s
and two measurement equations,

Xl = 56 + 89
(4.61)
X, = A& + Oy

The coefficient for £ in the measurement equation for X, is implicitly one,
while that in the equation for X, is an unknown parameter A. By arbitrarily
fixing the coefficient of the latent variable in one of the measurement-submodel
equations, we in effect express the latent variable in the metric (i.e., units of
measurement) of the corresponding indicator. This choice of scale is an
essentially arbitrary normalization rule: We could equally well fix the coeffi-

89— x,

S10—> X, — &6 > Y, - &

X3 — Y5 - 5’8

FIGURE 4.15. A structural-equation model with multiple indicators of an exogenous variable.
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cient of £ to one in the measurement equation for X, in which case the
coefficient for £ in the equation for X; becomes 1/A. Suppose, for example,
that £ is socio-economic status, X; is education measured in years, and X, is
income mez sured in dollars; according to equation (4.61), the latent variable &
is measured in years, and A converts years to dollars.!6

We may analyze the present model, as before, by substituting for the
unobserved variable in the first structural equation. Now, however, because we
have two indicators of &, we may substitute in two different ways:

Y, = Ya6( Xy — 8) + BusYs + &5
= Y46 X; + Bys¥s +,§7, (4.62)

where {7 = §; — Y409; and

X, &
Y4=Y46(T2_‘7t—0) + Bus¥s + &3
‘Y ” ‘ . I
= —%‘lxz +Bis¥s + & _ (4.63)

where {7 = {5 — (Y46/A)010-
Let us now multiply each of equations (4.62) and (4.63) by X; and take
expectations, obtaining

O34 = Y4013 T Bis0ss

_ Yas
O34 = —7\—023 + Bisoss

which we may solve for A = 0,3/015. This solution is not unique, however, for
we may obtain alternative expressions for A by taking expectations of equa-
tions (4.62) and (4.63) with ¥, and Y; (rather than Xj); for example, for Y,

O4 = Y4014 T Bis0ys + 047

_ Yas
Oas = 3 0u t BasOas T 07

which yields A = 0,,/0,,. Likewise, applying Y5 produces A = 0,5/0;5. ¥, and
Y; serve to obtain expressions for A because, although they are endogenous,
they are uncorrelated with the measurement errors 8y and 8;y. If the model is
correctly specified, then 6,3/0,3 = 054/014 = 025/015; in the sample, however,
we cannot expect these relations to hold precisely, and thus the parameter A is
overidentified.

16Although this example serves to illustrate clearly the arbitrary choice of scale for a latent
variable, and though this type of specification for socio-economic status has been employed in
applications, it is more sensible in this instance to conceive of the latent variable status as an effect
of education and income rather than as a cause of these observable variables.



282  LINEAR STRUCTURAL-EQUATION MODELS

With knowledge of A, we may proceed to determine the parameters in the
first structural equation. Applying X to equation (4.62), we get

- Oy = YagO12 T BasO2s v (4.64)

Even though X, is measured with error, it is uncorrelated with 8. Similarly,
applying X, to equation (4.63) produces :

¥
04 = _;\6"’12 + Bus0ss (4.65)

Because we have already determined A, equations (4.64) and (4.65) may be
solved for the structural parameters v, and fBys. Since alternative estimates of
A are available, and since our estimates Of v, and Bys depend upon which value
we use, these structural parameters are also overidentified.

The following points concerning this last example are noteworthy: (1) If
there were only one fallible indicator of &, the measurement submodel and the
structural submodel would both be underidentified. (2) If & were observed
directly and measured without error, the structural submodel would be just
identified. (3) The presence of two fallible indicators of £ in the example
serves to overidentify both the measurement submodel and the structural
submodel. .

4.6.2. Speciﬁcatibn and Estimation of LISREL Modeis

LISREL, an acronym for /inear structural relations, refers both to a general
structural-equation model with latent variables and multiple indicators
(Joreskog, 1973; Joreskog and Sorbom, 1977), and to a computer program
(Joreskog and Sorbom, 1978, 1981) that provides full-information maximum-
likelihood estimates for this model.” The highly general nature of the LISREL
model permits a variety of specifications; for example, by specifying that all
indicators are measured without error, and by establishing a one-to-one
correspondence between indicators and latent variables, the LISREL model
becomes an ordinary structural-equation model, for which the LISREL pro-
gram computes the usual FIML estimates.

In this section, we consider the form of the general LISREL model and
* sketch its estimation; we also examine an illustrative application. Although we
should generally establish the identiﬁcatioﬁ of a LISREL model prior to
estimating its parameters, the identification of models with latent variables is a
sufficiently involved topic to warrant separate treatment; we therefore take up
this subject in the next section.

17The version of LISREL described in this section is LISREL IV (Joreskog and Sorbom, 1978).
The newer LISREL V (Joreskog and Sorbom, 1981) incorporates a slightly different structural
model. We employ the LISREL IV model because its format is more similar to that of the general
structural-equation model presented in Section 4.1. .
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. Because the LISREL model is complex, we adopt the notation established
by Joreskog and his colleagues, even though this notation conflicts to a degree
with the conventions employed in this text. To do otherwise would be to invite
confusion, for the reader will surely have occasion to consult other sources,
such as the LISREL program manual. The symbols employed in the LISREL
model are summarized in Table 4.11.

The LISREL model may conveniently be divided into two parts: (1) a
structural submodel, specifying relations among latent variables; and (2) a
measurement submodel, which links latent variables to their observed indica-
tors. We shall examine each submodel in turn. '

The structural submodel has the familiar form of a structural-equation
model: ‘

B n = r Ef + &

(mxXm) (mx1) (mXn)(nX1) (mX1)

n;, §;, and §; are, consecutively, vectors of latent endogenous variables, latent
exogenous variables, and structural disturbances, for the ith of N observations.
Henceforth, we shall generally suppress the subscript i for observation. These,
and indeed all, variables in the LISREL model are expressed as deviations
from their expectations. B and T' are matrices of structural parameters. Note
that in the LISREL model, the exogenous variables appear on the right-hand
side of the structural equations. The covariance matrix of the exogenous

variables is given by ( ® )y and the covariances of the structural disturbances
(nXn

by ¥ . We assume that B is nonsingular, that § ~ N,(0, ®), that §; ~

(mXm)
N,,(0, ¥), that §, is independent of §;,-and that the observations are independ-
ent.!®
The reduced form of the LISREL model is

n=B TE+ B %

=D+ B}
where , D =BT is the matrix of reduced-form parameters. The covari-
mXn)
ance matrix ( C  of the latent endogenous variables is, therefore,
mXn)

C = E(n) = E|(D§ + B-X)(Dg + B%) |
= DE(&&)D’ + DE(&')(B™)" + BT'E(3¢')D" + BTE($)(B)
=D®D’ + B 1¥(B)’ | ' (4.66)

18For models in which the exogenous variables are measured without error (see below), we
need not make assumptions about their distribution—as was the case for the observed-variable
structural-equation models considered earlier in the chapter.



TABLE 4.11. Notation for the LISREL Model

Symbol : Meaning

N Number of observations

m Number of latent endogenous variables

n Number of latent exogenous variables

)/ Number of indicators of latent endogenous variables
q Number of indicators of latent exogenous variables
| Vector of latent endogenous variables

(mx1)
£ Vector of latent exogenous variables
(nX1)
¢ Vector of structural disturbances (errors in equations)
(mX1)
B Structural parameter matrix relatmg latent endogenous
(mXm) variables
T ~ Structural parameter matrix relatmg latent endogenous to
(mXn) latent exogenous variables
D . Reduced-form coefficient matrix
(mXn) ) . )
y Vector of indicators of latent endogenous variables
(pX1) '
) ))l( b Vector of indicators of latent exogenous variables
q : :
) e b Vector of measurement errors in endogenous indicators
pXL ' . 3
] Vector of measurement efrors in exogenous indicators
(gX1) )
A, , :
(r ;m) Coefficient matrices relating indicators to latent variables
X
(g%n)
Matrix of covariances among latent exogenous variables
(nXn)
4 Matrix of covariances among structural disturbances
(mXm) ’
e,
(pex” ) Matrices of covariances among measurement €rrors
()
(4%4)

Matrix of covariances among observed (indicator) variables
(p+gxp+a)
C Matrix of covariances among latent endogenous variables
(mXxXm) .

284
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Because the metric of the latent variables is frequently not substantively
meaningful, the researcher may wish to standardize the latent variables to unit
variance. Let us define diagonal matrices of standard deviations '

A, = (diagC)"?

T
(mXm)

A, = (diag @)/

(nXn)

Then n* = A;'n and §* = A 't are vectors of standardized latent variables.
Fach of the coefficient and covariance matrices previously defined may be
simply adjusted to provide a standardized solution; for example

B* = A;lBAn :
r* = A;II‘AE
¥* = AJMPAL

The LISREL measurement submodel consists of two matrix equations:

Yy = Ay m t o
(pX1)  (pxm) (mX1). (pX1)

x, = A, & + Y

1 .
(gx1)  (gxn) (ax1)  (gx1) -

Here, y; and x; are vectors of indicators of the latent endogenous and
exogenous variables, respectively; ¢; and 9, are vectors of measurement-€rror
variables, one for each indicator; and A, and A, are matrices of regression
coefficients relating the indicators to the latent variables. In general, each
column of A, and A, contains one unit entry, to fix the metric of the
corresponding latent variable, as explained in the previous section [see equa-
tion (4.61)]. (Alternatively, the variance of a latent exogenous variable may be
fixed, as may the variance of the disturbance associated with a latent endoge-
nous variable.) It is, moreover, frequently the case that each row of A and A,
has but one nonzero entry: Each observed variable is an indicator of just one
latent variable. In certain cases, however, it may make sense to treat an
observed variable as the effect of more than one latent variable, and LISREL
accommodates such a specification.

The covariances of the measurement €rrors appear in 6, and ©;.

. . . . (pXp) (g%Xq)
These matrices are not necessarily diagonal; that is, measurement €rrors may

be correlated. Unless they are specified carefully and frugally, however, corre-
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lated measurement errors are likely to underidentify a model. The measure-
ment errors ¢; and §; are assumed to have zero expectations; to be independent
of each other and of 1|,-, g, and §; and to be multivariately normally
distributed: ¢, ~ N,(0, 8,), §; ~ N,(0, 8;).

An ﬂlustranve LISREL model (from Joreskog and Sérbom, 1978) for the
Duncan, Haller, and Portes peer-influences data is shown in Figure 4.16. In
this model, there are multiple indicators for the latent endogenous variables,
but the exogenous variables are assumed to be measured without error. We
have, then, the following LISREL specifications for the exogenous indicators:

x = § (thatis, A, =1 8 = 0 ); and consequently ® =2 .,
(6X1)  (6x1) 6x 6x6)

6; = 62 (where 2, is the covariance matnx of the exogenous variables).

For the endogenous indicators,

0 &
Li (A 0 ('.’1_1 ) ]
Y, 0 1 ]\ &
Y, 0 A% &4

®, = diag(f;, 05, 05, 63)
@x4) ,

15 covariances 0 x;x; = ¢;

FIGURE 4.16. A LISREL model with latent endogenous variables for the Duncan, Hailer, and
Portes peer-influences data. X;, respondent’s parental aspiration; X;, respondent’s family SES; Xj,
respondent’s intelligence; X, best friend’s intelligence; X, best friend’s family SES; X;, best
friend’s parental aspiration; ¥;, respondent’s occupational aspiration; Y5, respondent’s educational
aspiration; Y3, best friend’s occupational aspiration; Y4, best friend’s educational aspiration; 7y,
respondent’s general level of aspiration; n,, best friend’s general level of aspiration. (Source:
Adapted with permission -from Karl G. Joreskog and Dag Sorbom, 1978, copyright National .
Educational Resources, Inc., 1978, 1981; and Duncan, Haller, and Portes, 1968, see Table 4.2.)
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9; is diagonal because the measurement errors in the endogenous indicators
are specified to be uncorrelated. The structural submodel is given by

3
£
(1 .312)(7)1)=('Yu Yz Y3 e O 0) £ +(§1
\Ba 1 /\M2 0 0 Y Yu Y5 Ya)|bs $2
§s
&

From the LISREL structural and measurement submodels we may derive
expressions for the covariances of the indicators. It is in this manner that a link
is established between the parameters of the model and observable quantities.
Let = represent the covariance matrix for the indicators,

2, 2
_ | xp  (pxa@)
(p+q%Xp+4) 2 2

xy xx

(gXp) (gxq)

We have, for example,

v

5, = E(’) = E[(A,n + ) (A,n + ¢)]
= A,E(n) X, + A E(ne) + E(en') A, + E(ee’)
= A,CA, + 8,
Then, using equation (4:66):
3, = A [B-ITeI"(B-1) + B ¥ (B 1) A, + 6, (4.67)

We may determine the other components of 2 in a similar manner, obtaining
(see Problem 4.19)

3,.= A, BTN,
3, =3, = AT (BN, (4.68)
.= AON, + 6,

The covariances of the observed variables, therefore, are functions (albeit
complex functions) of the parameters of the LISREL structural and measure-
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ment model. In addition, the assumptions of the model insure that- the
observed variables follow a multivariate npormal distribution: '

(,y‘) ~ N,,,(0,%)

Thus, the joint probability density for the observed variables in a sample of
size N is given by :

ey

i=

1 BT AN/
P(Y1,X1;-~-?YN’XN)= (2W)N(p+q)ﬂ‘2‘N/2°XP(-i2()(,.)2 l(xi))

The logarithm of the likelihood function may be written (Problem 4.19)

log L(B,T,®,¥,6,,6;, A, A,)
= - E—(z-zilllog(Zw) - %[—[loglzl + trace(S=7Y)]  (4.69)

where , S ) = (1/N)Y, X] 1Y, X]-is-the sample covariance matrix for the
ptaxp+q
indicators. Recall that = is a function of the model parameters (equations

(4.67) and (4.68)). Equation (4.69) tells us, in essence, that the likelihood is
large when the covariance matrix $ implied by the model is similar to the
observed sample covariance matrix S.

In estimating the model, it is necessary to take account of the prior
constraints on the parameters. Some of these constraints are normalizations:
Certain parameters are prespecified to be one. Other constraints are exclusions:
Certain parameters are prespecified to be zero. (The LISREL computer pro-
gram also permits equality constraints, where two or more parameters are
prespecified to be equal to each other.) The maximum-likelihood estimators of
B, T, and the other parameters maximize L subject to" these prior constraints.
As in the case of FIML estimation of observed-variable models, the log
likelihood (4.69) for the LISREL model must be maximized numerically.
Estimated asymptotic standard errors for estimators of all “free” (i.e., uncon-
strained) parameters may be obtained in the usual manner from the inverse of
the information matrix, which the LISREL program computes.

The example model shown in Figure 4.16 was estimated for standardized
indicators. Correlations among these indicators were given earlier in Table 4.2.
The standardized maximum-likelihood solution appears in equations (4.70).
(Note that although Af; and A%, originally were fixed to one, these values
change along with the other entries of A, when the model is standardized.)
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Standard errors for free-parameter estimates are shown in parentheses beneath
the estimates.

0.7667 0
0.8148 0
A% = (0.0691) _
y 0 0.8299
0 0.7716
(0.0583)

O  diag( 04121 03361 03112 04046
8l (0.0512) (0.0521) (0.0459)  (0.0462)

1 -—( 0.1994).
. 0.1027
* . 4.70
B —0.2176 1 (4.70)
(0.1103)
0.2103 0.3256 0.2848 0.0937 0 0
o (0.0506)  (0.0574)  (0.0576) (0.0648)
B 0o 0 0.0746 0.2758 0.4205 0.1922
(0.0624)  (0.0532) (0.0546)  (0.0468)
0.4780
$* = (0.0786)

—0.0355  0.3830
(0.0804)  (0.0648)

‘These results seem to be substantively acceptable: All of the structural and
measurement parameter estimates are of the anticipated sign, and all but ¥,
and 9, are statistically significant (at or beyond approximately the 2.5 percent
level, one-tail). Since y,, and v,; represent the effects of the other boy’s SES-on
each boy’s aspirations, it is reasonable that these coefficients be small; indeed,
in an earlier model for the peer-influences data (Figure 4.1), we set these
parameters to zero a priori. When we estimated that earlier model, we found a
large negative correlation between the structural disturbances. Notice that for
the present LISREL model, the covariance between the disturbances, 1,012, is
reassuringly close to zero, although a pos1t1ve value would be even more
reasonable. Apparently, the introduction of additional exogenous variables
(parental aspirations, X; and Xg), and the recognition of measurement error in
the indicators of the endogenous variables (made possible by multiple indica-
tors) has had a salutary effect on our estimates (see Gillespie and Fox, 1980).

4.6.3. Identification of Models With Latent Variables

The identification of structural-equation models with latent variables is a
" complex problem, and one that does not yet have a straightforward, general



290 LINEAR STRUCTURAL-EQUATION MODELS

solution. Some progress, however, has been made. Geraci (1977), for example,
discusses general conditions for identification of single-indicator models in
which (some) exogenous variables are measured with error. Further discussion
of the identification problem for laterit-variable models may be found in Wiley
(1973).

It is always possible to demonstrate the identification of a model, if indeed
it is identified, by showing that each of its parameters may be expressed in at
least one way as a function of covariances of observed variables. To do this, we
may use methods such as those employed in Section 4.6.1 and later in the
present section. This process is a tedious one, and if we fail to demonstrate the
identifiability of a model, we often cannot be certain that it is not our
imagination that has failed rather than the model.

There are, however, necessary conditions for identification, which may show
us that a model is underidentified; and there are sufficient conditions which
insure that a model is identified. What is missing is a condition, analogous to
the rank condition for nonrecursive observed-variable models, that is both
necessary and sufficient. Through the application of known necessary condi-'
tions and sufficient conditions, we hope to avoid having to identify a model on
an individual basis. ”

In practice, we may proceed to attempt to estimate a model without having
established its identification. An underidentified model produces a singular
information matrix, because the infinity of solutions implied by underidentifi-
cation is reflected in a flat likelihood function at the maximum.!® The LISREL
computer program calculates the information matrix, and therefore is generally
able to detect an attempt to estimate an underidentified model.

A global necessary condition for identification is that there be no more free
parameters to estimate than there are unique covariances among the observed
variables in the system. Put another way, the number of unknowns in the
estimating equations cannot exceed the number of known quantities. There are
(p + g + 1)(p + g)/2 unique observable variances and covariances, a num-
ber that is greatly exceeded by the number of entriesin B, I, ®, ¥, 6, 6;, A,
and A, even after normalizations are taken into account. Many prior restric-
tions, thcreforc, are needed to identify a LISREL model. Some of these
restrictions may derive trivially from the-particular application, as when a
variable is specified to be measured without error.

The model in Figure 4.16, for example, has 40 free parameters: A%;, A,
Bi2s B, €ight ¥’s, Yy1, Y1y, Yoy, four 6°°s, and 6(7)/2 = 21 ¢’s (which
necessarily equal the corresponding covariances among observed exogenous
variables). There are (4 + 6 + 1)(4 + 6)/2 = 55 unique entries in Z; if the
model is identified, therefore (and it is), there are 15 overidentifying restric-
tions. This counting rule does not guarantee the identification of a model:
Although restrictions are sufficiently numerous, they may be mJud1c10usly
located.

19Tn this respect, underidentification is analogous to perfect collinearity, which also leads to
underdetermined estimating equations.
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It is often possible to establish the identification of a model by treating the
measurement and structural submodels separately. We then seek to show (1)
that the restrictions on the measurement submodel are sufficient to identify all
covariances among latent variables, and (2) that, given these covariances, the
structural submodel is identified. For a nonrecursive structure, the conditional
identification of the structural submodel may be assessed by the rank condi-
tion. One useful rule of thumb (i.e., sufficient condition) is that the measure-
ment submodel is identified if (but not only if): (1) there are at least two
unique indicators for each latent variable, or if there is just one indicator, it is
measured without error; and (2) measurement errors are uncorrelated. It must
be stressed that the separation of the measurement and structural submodels,
and hence the scope of this rule of thumb, are restrictive: As we saw in the
previous section, measurement and structural submodels may contribute to
each other’s identification; likewise, models with single fallible indicators or
with correlated measurement errors may frequently be identified.

We demonstrate first that the variances and covariance of two latent
variables are identified if each has two fallible indicators, and if measurement
errors are independent. We refer to the model diagrammed in Figure 4.17.
Here, there are 10 observable covariances among, the four indicators. There are
nine unknown parameters: X3, Nz, $11, 912, 2, 05, 05, 63, and 62,. To show
that the parameters may be expressed in terms of observed covariances, we -
expand these covariances by the expectation method:

(@) o=y + 62
() o0y =Xy + 65
(€) 033=y + 63
(d) oy = dpXy + 65
(e) o1, =¢1Xy

(f) 034 =N

(8) o013 = ¢1101292
(1) 0= é1d129X%
(i) oy = Ny61191262

(j ) 03¢ = }\51‘35119512‘1522}"52
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$12

& £2
A A
X, X, X3 X5

I I 1 [ FIGURE 4.17. Two indicators for each of
3 32 33 85  two latent variables.

Solving first for the A’s, we get

N, = (i) 023 () 024

(g) 013 (k) 014

_(n) _ oy _ (J) _ o
(g) o3 (i) on

showing that these parameters are overidentified. With knowledge of the A’s,
we derive expressions for the other parameters by successive substitution:

. o
(e) ¢y =7
21

’ = 2

’ —_ %3
(&) ¢ 11922

(a’) bfl =03~ ¢y
(b) 6% = 0 - ok
(¢) 6 =053— ¢
() 6% = 04— 4N

Next, let us analyze the model shown in Figure 4.18, where one latent
variable is measured without error and the other has two indicators with
uncorrelated measurement errors. There are 3(4)/2 = 6 observed covariances
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and an equal pumber of free parameters: X, ¢y, $12> 9225 63,, and 62;.
Expressing the observed covariances as functions of the parameters, we get:

(a)
(b)
(c)
(d)
(e)
(f)

o1 = ¢
Oy = Gy + 02
n = @n T U

- \X ]
053 = Ny, + 053
61, = 91191292

p— 3 X
013 = 61,0120

— X
03 = Pph%;

Solving for the parameters, which are just identified, completes the demonstra-

tion:
(a’)
(1)
(d’)
(&)
(¢)
$12
/_\
£ 2
11 / %
X, X X,
)

Aay = __(e) = I
2= =
> (d) 052
611 = On
¢
023
¢22 = 3x
%
012
O =
611922
5 _ - _ .
b3 =0y~ ¢
02, = 0,, — X509
33 = O33 32922

FIGURE 4.18. Two indicators for one latent vari-
able and another variable measured without error. .
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PROBLEMS

4.17.. The model in Flgure 4, 19 is adapted from work by Bielby, Hauser, and
Featherman (1977) on response errors in models of the stratification
process. Alternative measures collected on different occasions were .
available for each of the latent variables in the model:

&
&
&
L
L)
M3
(@)

)
©

Father’s occupational status

Father’s education

Parents’ income

Respondent’s education

Occupational status of the respondent’s first job

Current occupational status

Comment on the specification of the model, paying attention to

the measurement-model assumptions as well as to the structural
model.

Show that the model is 1dent1ﬁed
Using the correlations for a sample of 578 nonblack males in the
civilian labor force, given in Table 4.12, estimate the parameters of

the model. Is it important to take measurement error into account
in estimating this model?

418. The data i in Table 4.13 were compiled by Inverarity (1976) as part of a .
+ study of the relationship between “mechanical solidarity” and “repres-

8 8, € €, €3

X, X, : Y, Y
8g 8¢ A €4 €5

FIGURE 4.19. Biclby, Hauser, and Featherman’s stratification model.
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sive justice.” Both concepts, and the hypothesized link between them,
are due to the 19th-century French sociologist, Emile Durkheim, who
distinguished between two forms of social solidarity: mechanical soli-
darity based on social similarity, and organic solidarity based on a
detailed social division of labor. Inverarity examines the incidence of
Iynching in the period 1889-1896 for 59 Louisiana parishes, relating
this measure of repressive justice to characteristics of the parishes.
He argues that proportion black (X;) and religious homogeneity
(X;) should exert a positive influence on mechanical solidarity among
whites, and that urbanization (X,, coded one for parishes with some
urban population, and zero otherwise) should have a negative impact.
Inverarity predicts that the number of lynchings in a parish (Y;) is
directly related to the level of mechanical solidarity (7,) and to the size
of the black population (X,, in thousands) in the parish. The propor-
tion of the Democratic Party vote in the 1892 presidential election (Y;)
and in the 1896 gubernatorial election (Y,) are taken as indicators of
mechanical solidarity. The model in Figure 4.20 was specified by
Bagozzi (1977) for Inverarity’s data. (Also see Wasserman, 1977; Pope
and Ragin, 1977; Bohrnstedt, 1977; and Inverarity, 1977).

TABLE 4.12. Blelby, Hauser, and Featherman’s Stratification Data

X X; X, - X Xs Xs Y Y,
X, [ 1000 '

X, | 0869  1.000

X, | 0585 058  1.000

X4 0.597 0.599 0.939 1.000

X, | 042 0437 0477 0467 1000

X 0.426 0.450 0.436 0.478 0.913 1.000

Y; 0428 0430 0.448 0.445 0.426 0.439 1.000

Y, 0.445 0.443 0.483 0.492 0.485 0.502 0.838 1.000
Y, 0419 0419 0.467 0.467 0.486 0.501 0.801 0921
Y, 0.398 0410 0.290 0.300 0.370 0.358 0.581 0.644
Ys 0.409 0.409 0.325 0.322 0.363 0.348 0.578 0.642
Y 0.340 0.369 0.280 0.284 0.291 0.296 0.504 0.563
Y, 0.364 0.390 0.291 -0.308 0.307 0.301 0.519 .0.603

Y, Y, Y; Yq Y,
Y, | 1000

Y, | 0637  1.000

Y; | 0631 0847 1000

Y, | 0534 058 0599  1.000

Y, | 0566 0618 0620 0797  1.000

Source: Bielby, Hauser, and Featherman, in Aigner and Goldberger, -eds., Latent Variables in
Socio-economic Models, © Elsevier North-Holland, Inc., 1977. Reprinted with permission from Bi¢lby,
Hauser, and Featherman (1977: Table 2). '
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€1 €2
|
X, = £ Y, Y,
bt~/
X,=k2 > Ty L9
\ /
Xs=fa '
{
Xo = ke ' = Ys

§2
FIGURE 4.20. Bagozzi’s modél for Inverarity’s data on Iynchings.

(a) Comment on the specification of Bagozzi’s model. Does it .ade-
quately capture Inverarity’s argument?
(b) Show that the model is identi ed. What happens to the identifica-

tion status of the model if Y, is specified to be measured with error
(that is, if T3 is taken as an imperfect indicator of repressive
justice)?
(c) Estimate the model using the covariances in Table 4.13.
419. (a) Derive equations (4.68) for =, Zyy» 204 2 from the LISREL
model. ’

(b) Derive the log likelihood for the LISREL model [equation (4.69)]. .

TABLE 4.13. Covariances for iniverarity’s Lynching Data

’ X, X, Xy X4 Y, Y, Y,
X, 0.04537
X, -0.01029 019272 '
X; 000403 —0.01566 0.00672
Xa 0.53791 1.94136 —0.20256 121.61678
Y; 0.01449 0.00903 0.00424 025706 0.04410
Y, 0.03166 —0.00583 0.00334 0.58084 . 0.02385 0.05244
Y, 0.09991 0.11866 —0.00183 732943 0.08448 007756 2.52810
Mean 0.508 0.254 0.902 11.031 0.766 0.589 1.41

Source: Adapted with permission from Inverarity (1976: T able 2).



EVALUATION OF STRUCTURAL-EQUATION MODELS 297
" 4.7. EVALUATION OF STRUCTURAL-EQUATION MODELS

As is general with statistical models, having fit a structural-equation model to
data, it is desirable to determine, to the extent possible, whether the model
adequately represents the data. Certain checks on the adequacy of the model
are implicit in the process of interpretation and testing, as- when we ask
whether an estimated coefficient assumes a reasonable value, or is statistically
distinguishable from zero. :

Some procedures for analysis of residuals, presented in Section 3.2 for
single-equation linear models, may be extended to structural-equation models
(see Belsley, Kuh, and Welsch, 1980: 266-269). For recursive models, the
application. of these procedures is straightforward, since a recursive model is
simply a collection of related regression equations, each estimated by OLS. For
nonrecursive models, estimated say by 2SLS, endogenous independent vari-
ables are in general correlated with structural residuals. In examining residual
plots for nonlinearity, therefore, we must discount visually whatever linear
relation is present. An alternative is to use second-stage regression residuals for
certain residual analyses, for example, in the detection of outliers.

Two topics related to the question of model quality are dealt with at greater
length in this section. First, we develop measures of fit for structural-equation
models; and second, we assess the adequacy of overidentifying restrictions.

_We should not conclude, however, that all assumptions underlying a struc-
tural-equation model may be examined in light of the data. As pointed out in
Section 4.5, we cannot in general expect data to mediate issues of causal
priority. Nor can we generally assess the crucial assumption of independence
between exogenous variables and disturbances: Indeed, in a just-identified
model, exogenous variables and structural residuals are perfectly uncorrelated
in the sample, much as the independent variables are uncorrelated with the
residuals in OLS regression. In an overidentified equation, however, structural .
residuals may have nonzero correlations with excluded exogenous variables. If
these correlations are substantial, we should question the adequacy of the
overidentifying restrictions, a topic pursued in Section 4.7.2.

 4.7.1. Indices of Fit for Structural-Equation Models

For endogenous variables measured in a meaningful metric, the estimated
standard error, SEj, provides an interpretable measure of fit, as in linear
regression analysis. Since recursive models are fit by OLS, there is a multiple
correlation coefficient for each structural equation; these R? values may be
interpreted in the usual manner.

Although several R? analogs have been proposed for structural equations in
nonrecursive models, these statistics do not have certain properties that we
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associate with the multiple correlation coefficient. In OLS regression

RSS
_ — 2
g2 ISS-RSS_ RSS_. T s
TSS TSS TSS S2
_ Y
n

Though the statistic 1 — (SE /SY) may be computed for a structural equation
in a nonrecursive model], and though this statistic seems sensible, Basmann
(1962) has shown that it is unbounded below. Likewise, in OLS regression,
R = ryy. In a nonrecursive structural-equation model, the correlation between
observed and fitted endogenous-variable values may be negative (Basmann,
1962). Nevertheless, statistics such as 1 — (§2 /Sy) and ryy are frequently
reported because of their simplicity and mtmtlve appeal.

Since the reduced form may be estimated consistently by OLS regressmn
we_may justifiably report the multiple correlation for each reduced-form
equation (i.e., for each endogenous variable). Hooper (1959) has extended this
approach, formulating a correlational index for nonrecursive structural-equa-
tion models that assesses the degree of joint dependence of the endogenous on
the exogenous variables. This dependence is expressed in the reduced-form
equation

Y = X II' + A
(nXq)  (nXm) (mXq) = (nXgq)

Hooper estimates the reduced-form parameters by OLS regression:
P = (XX) XY

. (An alternative would be to obtain P = —B~1C, but in an overidentified
model this procedure would change the ultimate interpretation of Hooper’s
correlatlonal measure.) Fitted endogenous-variable values are then given by

¥=XpP = X(X'X)7'X'Y

The multivariate analog of total variation (TSS) is the sum-of-squares-and-
products matrix Y'Y; s1m1lar1y, Y'Y is the analog of “explained” variation
(RegrSS). Y"Y(Y'Y)~!, therefore, is a multivariate version of explained “di-
vided by” total vananon Hooper’s trace correlation statistic is defined as

R?= %trace[f{’? (Y’Y)_l] : (4.71)
Hooper demonstrates that R? is ‘the mean squared canonical correlation®

2 Canonical correlntions assess the strength of linear dependencies between two sets of
variables—here, the exogenous and endogenous variables in 2 structural-equation model. For
details of canonical-correlation theory, see Morrison (1976: 259-263).
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between the sets of endogenous and exogenous variables. Notice that when
'q = 1, equation (4.71) specializes to the usual R? statistic.

For the Duncan, Haller, and Portes peer-influences model in Figure 4.1,
R? = 230. Roughly, then; 23 percent of the joint variation of ¥, and ¥ is
accounted for by their relation to X;, X,, X;, and X,. The individual R?’s for
the two reduced-form regressions are .264 and-.319. :

4.7.2. Overidentification Tests

We have mentioned at several points in this chapter that an overidentified
structural-equation model may be inconsistent with the observed data. One
descriptive method for tracing the consequences of overidentification is to
calculate model-implied covariances among observed variables, comparing
these to sample covariances computed directly from the data. Implied covari-
ances may be calculated by equations (4.51), or for LISREL models, by the
sample analogs of equations (4.67) and (4.68). Implied covariances (correla-
tions) for the standardized Blau and Duncan model were shown in Table 4.9.
It is clear that this model closely reproduces covariances among observed
variables.?! ' : ' 4

A formal test of overidentifying restrictions may be constructed by the
likelihood-ratio principle. We develop this test for the LISREL model, because
of that model’s generality.? o ' .

The log likelihood for the LISREL model is given by equation (4.69).
Suppose that a model with » free parameters is overidentified and has a
likelihood of L,. If the overidentifying restrictions are removed, S and the
model-implied estimate of 2 become identical, yielding log likelihood

_N(p+gq)

log L, = 3

log(2) ~ 3. (log]S| + p + q)

The number of free parameters in the just-identified model is -equal to the
~number of observed covariances: (p + g)(p + q + 1)/2. The likelihood-ratio
test statistic for the overidentifying restrictions is therefore

G; = —~2(log L, — log L,)
= Nlog|£| + trace(SE~1) — log|S| —(p + )] (4.72)

Here £ is the estimate of implied by the maximum-likelihood estimates of

21Even' an overidentified recursive model necessarily reproduces certain covariances precisely.
See Fox (1980) for further discussion of this point. For the Blau and Duncan model, in fact, only
S7% and S may depart from the corresponding S;;’s.

22 Overidentification tests are also available for single-equation methods such as 2SLS. See, for
example, Fox (1979a).



300 LINEAR-STRUCTURAL EQUATION MODELS

the model parameters. As a likelihood-ratio statistic, G2 is asymptotically
distributed as x with [(p + g)(p + g+ 1)/2] - r degrees of freedom (the
degree of overidentification of the model). Notice that G2 will be small when
the reproduced covariances £ are similar to their directly observed counter-
parts S. Since observed-variable structural-equation models estimated by FIML
are special cases of LISREL estimation, the test in equation (4.72) is applicable
to these models as well.

We have noted that OLS and FIML are identical for recursive models. For
these models, the overidentification test statlstlc in equation (4.72) spec1a11zes
to (Land, 1973):

q S2
GZ=n} log
j=1 Sk

where n is the sample size, q is the number of equations in the model, SE is the
estimated residual variance from the jth structural equation, and SE. is the
estimated residual variance for the jth equation respecified so that 1o prior
variables are excluded. If the SE are appreciably larger than the SE*, then we
should suspect that prior variables have been falsely excluded; when this is the
case, the test statistic will be large. The degrees of freedom for GZ are equal to
the number of excluded prior variables in all structural equations of the model.

Overidentification test statistics for the models discussed in this chapter are
shown in Table 4.14. Notice that the extremely large sample for the Blau and
Duncan study results in a statistically significant overidentification test even
though the mode] fits the data very closely: Given a large enough sample,
virtually any overidentified model may be rejected. (Indeed, for the Blau and
Duncan model, the difference between the calculated GZ and zero may be the

TABLE 4.14. Overidentification Tests

Model n G df ¥4

Duncan et al. 329 2.81 2 25
Nom'ecurswe

(Figure 4. 1)

Blau and Duncan 20,700 30.9 2 < .001
Recursive
(Figure 4.2)

Duncan et al. 329 3.81 2 15
Block-Recursive :

(Figure 4.4)

Duncan et al. 329 26.70 15 .03
LISREL

(Figure 4.16)
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result of rounding errors.) The significant overidentification test for the LISREL
model fit to the peer-influences data is more distressing, yet even here’ we
should be loath to reject the model on this basis alone.

A statistically significant overidentification test may motivate model re-
specification, perhaps by removing one or more overidentifying restrictions,
perhaps by more drastic reformulation. The data may be helpful in suggesting
which overidentifying restrictions to remove, but we must be careful always to
guide our model-building activity by substantive criteria.

The magnitude of differences between model-implied and directly calculated
sample covariances is an uncertain guide to model respecification (see Costner
and Schoenberg, 1973; Sérbom, 1975).-Sérbom (1975) has suggested examining
the partial derivatives of the likelihood function with respect to the fixed (i.e.,
constrained) parameters. These derivatives are available as by-products of the
model-fitting procedure. When the likelihood is maximized, its partial deriva-
tives with respect to the free parameters are, of course, zero; a steep gradient
with respect to a fixed parameter, however, indicates that the likelihood might
be substantially increased if that parameter were permitted to take on a
different value.

PROBLEMS

4.20. Compute trace correlations and reduced-form correlations for the non-
recursive models estimated in Problems 4.11 and 4.12.

4.21. Calculate model-implied covariances and likelihood-ratio overidentifica-
tion tests for the structural-equation models fit in Problems 4.12, 4.13,
4.14,4.17, and 4.18. In each case, if the model appears to be inadequate,
consider how it might be respecified.
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