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Linear Models in R

Review of Dummy-Variable Regression

@ Defining a dummy-variable regressor for a
dichotomous explanatory variable — e.g.,
gender in the regression of income Y on
gender and education X.

@ Let D = 0 for women and D = 1 for men.

@ Then the additive dummy-regression
model is

Y=a+BX+yD+e

@ So, for women (treating X as
conditionally fixed)

Y = a+BX+yx0+e
E(Y) = a+pBX
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@ And, for men
Y = a+BX+yx1l+e

(a+7) + BX

@ In R notation with data in Data:
model <- 1m(income ~ education
+ gender, data=Data).
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Linear Models in R

Review of Dummy-Variable Regression

@ Different slopes for women and men v
(“different slopes for different folks") can
be modelled by introducing an interaction
regressor, the product of X and D, into B+d
the model: :

Y=a+BX+9yD+6X xD)+c¢ B
o+y

@ Then, for women "
Y = a+BX+7x0+5Xx0)+e¢ 0 X
E(Y) = a+pBX @ In R (compact) notation:
model <- 1lm (income ~
education*gender, data=Data).

@ And, for men
Y = a+BX+yx14+5Xx1)+e¢
E(Y) = (a+7)+(B+)X
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Linear Models in R

Review of Dummy-Variable Regression

@ Polytomous explanatory variables—i.e., factors with more than two levels—are handled by
creating a set of dummy regressors, one fewer than the number of levels.

@ For example, for gender with levels female, male, and nonbinary, we can code two dummy
regressors:

Gender D1 D2
female 0 0
male 1 0
nonbinary 0 1
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Linear Models in R

Review of Dummy-Variable Regression

@ Then we can fit the model

Y =a+ BX+71D1+ 72D3+ 01(X X D1) +62(X x Dp) + ¢

@ and

female: E(Y) =a+BX + 71 X0+ 72 X 04 61(X x 0) + J2(X x 0)
=a+pX
male: E(Y) =a+ BX + 91 X1+ 72 x 04 51(X x 1) 4+ d2(X x 0)
= (¢ +71) + (B+d1)X
nonbinary : E(Y) =a+ BX + 91 X0+ 72 x 1 +81(X x 0) +d2(X x 1)
— (a+72) + (B+52)X
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Linear Models in R

Type-1l Tests for Linear (and Other) Models

@ Type |l tests are constructed in conformity to the principle of marginality: Each term in
the model is tested assuming that its higher-order relatives are zero (and hence are
ignored).

@ Thus, a main effect (e.g., X) is tested assuming that the interaction or interactions to
which the main effect is marginal (e.g., X:A, X:A:B) are zero.

@ For example, consider the model y ~ axbxc or in longer form
y~1+a+b+c+ ab+ aic+ bic+ a:b:c.
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Linear Models in R

Type-Il Tests for Linear (and Other) Models
@ For Type-ll tests of all terms, we implicitly fit the following models (all in longer form):

Model Formula

1 y ~1+a+b+c+ab+ a:ic+ bic+ a:b:c
2 y~1+a+b+c+ab+ a:ic+ b:c
3 y~1+a+b+c+aic+ b:c

4 y~1+a+b+c+ ab+ b:c

5 y~1+a+b+c+ab+ac

6 y~1+a+b+c+b:c

7 y ~1+Db+c+ b:c

8 y~1+a+b+c+ a:c

9 y~1+a+c+a:c

10 y~1+a+b+c+ab

11 y ~1+a+b+ab
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Linear Models in R

Type-1l Tests for Linear (and Other) Models

@ Contrasting pairs of models by subtracting the regression sum of squares for the smaller
model from that for the larger model produces the Type-Il ANOVA table:

Term  Models Contrasted

a 6—7
b 8—9
c 10 —11
a:b 2—3
a:c 2—4
b:c 2—5
a:b:c 1-2

@ The degrees of freedom for each term are the number of regressors used for that term.
@ The estimated error variance used for the denominator of the F-tests comes from the
largest model fit to the data, here Model 1, and the denominator degrees of freedom for

F are the residual degrees of freedom for this model.
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Linear Models in R

Arguments of the 1m() Function

@ Im(formula, data, subset, weights, na.action, method = "qr",
model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,
contrasts = NULL, offset, ...)

@ Operators for the formula argument:

Expression | Interpretation Example

A+ B include both A and B income + education
A-B exclude B from A a*bxd - a:b:d

A:B interaction of A and B type:education

AxB A +B+ A:B typexeducation

B %in’% A | B nested within A education %in) type
A/B A + B %inj A type/education

A"k effects crossed to orderk | (a + b + d) "2
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Linear Models in R

Arguments of the 1m() Function

@ data: A data frame containing the data for the model.

@ subset:
e a logical vector:  subset = gender == "F"
@ a numeric vector of observation indices: subset = 1:100
@ a negative numeric vector with observations to be omitted: subset = -c(6, 16)

weights: for weighted-least-squares regression

na.action: name of a function to handle missing data; default given by the na.action
option, initially "na.omit"

method, model, x, y, qr, singular.ok: technical arguments

contrasts: specify a list of contrasts for factors; e.g.,
contrasts=1list(partner.status=contr.sum, fcategory=contr.poly))

@ offset: term added to the right-hand-side of the model with a fixed coefficient of 1.
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Linear Models in R

Regression Diagnostics: Unusual Cases

@ Influence on the regression coefficients = leverage X outlyingness.

@ Hat-values measure leverage.

o The fitted linear regression model in matrix form is y = Xb + e, where y is the (n x 1)
response vector, X is the (n x p) model matrix, and b = (XTX)"1XTy is the (p x 1) vector
of least squares coefficients.

o The fitted values are then ¥ = Xb = X(XTX)~1XTy = Hy, where the (n x n) hat-matrix is
H=X(XTX)"IXT.

o The hj; element of H gives the weight of Y; in determining Y.

o The H matrix is symmetric (H = HT) and idempotent (H?> = H), and it follows that the jth
diagonal element of H, h; = h;; =} " ; hl?j summarizes the size of all of the elements in the
Jjth column of of H and hence the leverage of the jth case in determining the fit.

o The diagonal entries h; of H are the hat-values.

e The hat-values are bounded between 1/n (if the model has an intercept, otherwise 0) and 1,
and the average hat-values is h = p/n.
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Linear Models in R

Regression Diagnostics: Unusual Cases

@ Studentized residuals measure outlyingness.

e The studentized residuals are £
i

- Se(-iyvV1—hj

Eti

where E; is the ith element of the least-squares residuals vector e and Sg(_;) is the standard
deviation of the residuals when the regression is refit with the ith case removed.

o If the model is correct, then each studentized residual is distributed at t with n —p —1
degrees of freedom, providing a basis for an outlier test based on the the largest absolute
studentized residual.

e But because there are n studentized residuals, it's necessary to correct for simultaneous
statistical inference—e.g., a Bonferroni correction, which multiplies the two-sided P-value for
the t-test by n.
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Linear Models in R

Regression Diagnostics: Unusual Cases

@ Measuring influence on the regression coefficients with dfbeta and Cook’s D:

e The most direct measure is to refit the model without the ith case and see how the
coefficients change.

o The answer is dfbeta; =b —b(_;) = (XTX)"Ix;E; /(1 — h;), where b(_j) is the vector of
least-squares coefficients computed with the ith case deleted, and x; is the ith row of X
(written as a column vector).

o Because there are a lot (n x p) of dfbetay;, it's useful to summarize the p values for each

case /. The most common such measure is Cook’s distance:
_ dfbeta/XTX dfbeta; _ (V=9(-)"O=Y) _Ef  h
a pSE a pSZ T p T 1-h

= outlyingness X leverage

D;

where ?(_,-) is the vector of fitted values computed when the ith case is removed.
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Linear Models in R

Regression Diagnostics: Added-Variable (AV) Plots

@ Added-variable plots visualize leverage, outlyingness, and influence on each regression
coefficient, reducing the p-dimensional scatterplot of the data to a series of p
two-dimensional scatterplots, one for each coefficient.

@ For example, focusing on the coefficient By of Xj in the regression
Y:A+81X1-|—82X2—|—-°°-|—kak-|—E(SOp=k—|—1):

o Regress Y on X3,..., X, (and an intercept), obtaining residuals EM) (i.e., what remains of
Y when the effects of X, ..., Xj are removed).
o Regress X1 on Xp,..., Xk (and an intercept), obtaining residuals E(X1) (i.e., what remains of
X1 when the effects of X3, ..., X are removed).
e plot EM™M) versus E(X1).
@ Repeat for each of Xy, ..., Xk (and even, if desired, for the constant regressor, Xp = 1).
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Linear Models in R

Regression Diagnostics: Added-Variable (AV) Plots

@ The AV plot for X; has the following remarkable properties:

o The slope of the least-squares line in the plot is the coefficient B; of X; in the multiple
regression.

e The residuals from this line are the same as the residuals E; in the multiple regression.

o The horizontal variation of X; in the plot is its conditional variation holding the other Xs
constant: 5)2<

X: 2
i|other Xs — Y EX/ (n— k).
o Consequently, the standard error of B; computed from the simple regression corresponding to

the plot, SE(B;) = SE/\/ZE(XJ)2 is the same as the standard error of B; from the multiple
regression.
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Linear Models in R

Regression Diagnostics: Component-Plus-Residuals (C+R) Plots

@ Component-plus-Residuals plots are even a simpler way of reducing the p-dimensional
scatterplot to a series of 2D plots:

e Add the residuals from the full regression to the linear component representing X; to form
the partial residuals: EM = Bi1Xi+ E.
o Plot E() versus X1, enhancing the graph with a scatterplot smoother (nonparametric
regression line) to judge nonlinearity.
@ By construction, the least-squares slope of the C+R plot for Xi is By from the multiple
regression, and the residuals in the C+R plot are just the Es.

@ Under certain reasonably general (but not bulletproof) circumstances, if the partial
relationship between Y and Xj is nonlinear but incorrectly modelled as linear, the nature
of the nonlinearity will be apparent in the C+R plot for Xj.

@ Repeat for each of X5, ..., Xj.
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Linear Models in R

The Bulging Rule for Linearizing a Relationship

@ It's often possible to linearize a nonlinear relationship between Y and X by transforming
one or the other (or both) by a power transformation.

@ By power transformations, | mean X — XP or similarly for Y.

e The power p may be positive or negative, and need not be a whole number.

e For example, XV2 = /X and X1 =1/X.

o p =1 is no transformation: X! = X.

o If p=0, we use log(X).

o Following John Tukey, we say that p > 1 (e.g., X2, X3) is a transformation “up the ladder
of powers” and p < 1 (e.g., x1/2 log(X), 1/X) is “down the ladder of powers."

John Fox (McMaster University) R Statistical Computing Environment ICPSR 2021 19/48

Linear Models in R

The Bulging Rule for Linearizing a Relationship

3
@ This approach works if :(z
© The values of the variable to be Y up:
transformed are all positive. A
@ The relationship between the variables is
monotone (strictly increasing or
decreasing). _ _
© The reIatic?nship is simple, in the sense X down: — > L
that the direction of curvature doesn't log(X), X SRS
change.
© There are then only four patterns,
summarized by Mosteller and Tukey's ¥
bulging rule: Y down:
N
log(Y)
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© Generalized Linear Models in R
@ Review of the Structure of GLMs
@ Implementation of GLMs in R: The glm() Function
@ GLMs for Binary/Binomial Data
@ GLMs for Count Data and Polytomous Data
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Generalized Linear Models in R
Review of the Structure of GLMs

@ A generalized linear model consists of three components:

@ A random component, specifying the conditional distribution of the response variable, Y;,
given the predictors. Traditionally, the random component is an exponential family — the
normal (Gaussian), binomial, Poisson, gamma, or inverse-Gaussian.

@ A linear function of the regressors, called the linear predictor,
i =+ p1Xin + -+ PrXi

on which the expected value y; of Y; depends.

@ A link function g(u;) = 1;, which transforms the expectation of the response to the linear
predictor. The inverse of the link function is called the mean function: g~ (1;) = u;.
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Generalized Linear Models in R

Review of the Structure of GLMs

@ In the following table, the logit, probit and complementary log-log links are for binomial
or binary data:

Link i = g(pi) ui =g (1)
identity Ui i
log Ioge Hi el
inverse ,u,-_l ,-_1
inverse-square ;14,._2 77,-_1/2
square-root VHi 171,-2

0 )
logit log, — g
probit D(p;) D (177)
complementary log-log | log.[— log.(1 — u;)] | 1 — exp[— exp(7;)]
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Generalized Linear Models in R
Implementation of GLMs in R: The glm() Function

@ Generalized linear models are fit with the glm() function. Most of the arguments of
glm() are similar to those of 1m():
e The response variable and regressors are given in a model formula.
e data, subset, and na.action arguments determine the data on which the model is fit.
e The additional family argument is used to specify a family-generator function, which may
take other arguments, such as a link function.
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Generalized Linear Models in R

Implementation of GLMs in R: The glm() Function

@ The following table gives family generators and default links:

Family Default Link | Range of Y; | V(Yi|n;)
gaussian identity (—o0, +00) ¢

. . . 0, ]., o Ny
binomial logit — wi(1—u;)
poisson log 0,12 .. Hi
Gamma inverse (0, 00) Ppu?
inverse.gaussian | 1/mu”~2 (0, 00) (p‘u?

@ For distributions in the exponential families, the variance is a function of the mean and a
dispersion parameter ¢ (fixed to 1 for the binomial and Poisson distributions).
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Generalized Linear Models in R
Implementation of GLMs in R: The glm() Function

@ The following table shows the links available (v') for each family in R, with the default
link marked by

link

family identity inverse sqrt 1/mu”2 log 1logit probit cloglog
gaussian * v
binomial

poisson

Gamma
inverse.gaussian
quasi
quasibinomial
quasipoisson

* v v
v

RN SENEN

*
v v

ENEN
SNEN

v
*

DD SENENEN
<ok

v

*

@ The quasi, quasibinomial, and quasipoisson family generators do not correspond to
exponential families.
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Generalized Linear Models in R

GLMs for Binary/Binomial

@ The response for a binomial GLM may be specified in several forms:

e For binary data, the response may be
@ a variable or an R expression that evaluates to Os (‘failure’) and 1s (‘success’).
@ a logical variable or expression, such as voted == "yes" (with TRUE representing success, and

FALSE failure).
@ a factor (in which case the first category is taken to represent failure and the others success).

e For binomial data, the response may be
@ a two-column matrix, with the first column giving the count of successes and the second the
count of failures for each binomial observation.
@ a vector giving the proportion of successes, while the binomial denominators (total counts or
numbers of trials) are given by the weights argument to glm().
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Generalized Linear Models in R
GLMs for Count Data and Polytomous Data

@ Poisson generalized linear models are commonly used when the response variable is a
count (Poisson regression) and for modeling associations in contingency tables (loglinear
models). The two applications are formally equivalent.

@ Poisson GLMs are fit in R using the poisson family generator with glm().

@ Overdispersed binomial and Poisson models may be fit via the quasibinomial and
quasipoisson families.

@ The glm.nb() function in the MASS package fits negative-binomial GLMs to count data.

@ The multinom() function in the nnet package fits multinomial GLMs for nominal
polytomous responses.

@ The polr() function in the MASS package fits the proportional-odds logit model and
the ordered probit model to ordinal polytomous responses.

@ The c1lm() function in the ordinal package fits a variety of models (including the
proportional-odds model) to ordinal polytomous responses.
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© Mixed-Effects Models in R
@ The Linear Mixed-Effects Model
@ Fitting Mixed Models in R
@ A Mixed Model for the Blackmore Exercise Data
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The Linear Mixed-Effects Model

@ The Laird-Ware form of the linear mixed model:

Yi = PutBaXoj+ -+ BpXpij + Brilujj + - - + BoiZgij + €
Bii ~ N(0,97), Cov(Byi, Biri) = P
Byi, Biir are independent for i # i’
8,:,' ~ /V(O, 0'2/\;Jj), COV(&,'J', eij/) =S 0'2/\,'jj/
gjj, €pjp are independent for / # i’
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The Linear Mixed-Effects Model

@ where:
o Y is the value of the response variable for the jth of n; observations in the ith of m groups
or clusters.
o B1,B2,....Bp are the fixed-effect coefficients, which are identical for all groups.
o Xpjj, ..., Xpjj are the fixed-effect regressors for observation j in group i; there is also
implicitly a constant regressor, Xy; = 1.
o Byj,..., By are the random-effect coefficients for group i/, assumed to be multivariately

normally distributed, independent of the random effects of other groups. The random effects,
therefore, vary by group.
@ The Bj, are thought of as random variables, not as parameters, and are similar in this respect
to the errors ¢;.
° Zl,-j, ..., Zgij are the random-effect regressors.

@ The Zs are almost always a subset of the Xs (and may include all of the Xs).
@ When there is a random intercept term, Z1; = 1.
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The Linear Mixed-Effects Model

@ The remaining parameters specify the variance-covariance components (don't get lost!):
° qu are the variances and ¢, the covariances among the random effects, assumed to be
constant across groups.
@ In some applications, the s are parametrized in terms of a smaller number of fundamental
parameters.

o ¢j; is the error for observation j in group i.
@ The errors for group i are assumed to be multivariately normally distributed, and independent
of errors in other groups.

° 02/\,]-1-/ are the covariances between errors in group 1.

o Generally, the Aj; are parametrized in terms of a few basic parameters, and their specific form
depends upon context.

@ When observations are sampled independently within groups and are assumed to have constant
error variance (as is typical in hierarchical models), Aj; = 1, Ay = 0 (for j # j'), and thus the
only free parameter to estimate is the common error variance, 2.

o If the observations in a “group” represent longitudinal data on a single individual, then the
structure of the As may be specified to capture serial (i.e., over-time) dependencies among the

€rrors.
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Fitting Mixed Models in R

with the nlme and Ime4 packages

@ In the nlme package (Pinheiro, Bates, DebRoy, and Sarkar):

e 1lme(): linear mixed-effects models with nested random effects; can model serially correlated
errors.
e nlme(): nonlinear mixed-effects models.

@ In the Ime4 package (Bates, Maechler, Bolker, and Walker):
o lmer(): linear mixed-effects models with nested or crossed random effects; no facility (yet)
for serially correlated errors.
o glmer(): generalized-linear mixed-effects models.
@ There are many other CRAN packages that fit a variety of mixed-effects models, perhaps
most notably gimmTMB
(see https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html).

@ There are also Bayesian approaches to modeling hierarchical and longitudinal data that
offer certain advantages; see in particular the rstan, rstanarm, and blme packages.
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A Mixed Model for the Blackmore Exercise Data
Longitudinal Model

@ A level-1 model specifying a linear “growth curve” for log exercise for each subject:
log -exercisej; = ao; + a1i(age; — 8) +¢j;

@ Our interest in detecting differences in exercise histories between subjects and controls
suggests the level-2 model

Xo; = 7Yoo + Yoigroup; + wo;
X1; = Y10 + Yy118roup; + wi;

where group is a dummy variable coded 1 for subjects and O for controls.
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https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html

A Mixed Model for the Blackmore Exercise Data

Laird-Ware form of the Model

@ Substituting the level-2 model into the level-1 model produces

log -exercise;; = (Yoo + Yorgroup; + wo;) + (710 + Yy118roup; + wi;)(age; — 8) +¢j
= 7Yoo + Yo1group; + Y10(age; — 8) + y11group; x (age; — 8)
+ wo; + wii(age; — 8) + ¢

@ in Laird-Ware form,
Yij = B1 + B2Xojj + B3 X3ij + PaXajj + O1i + 021 L2j + €
@ Continuous first-order autoregressive process for the errors:
Cor(eje, €i t45) = p(s) = ¢l°!

where the time-interval between observations, s, need not be an integer.
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A Mixed Model for the Blackmore Exercise Data
Specifying the Model in 1me () and lmer ()

@ Using 1me () in the nlme package:

lme(log.exercise ~ I(age - 8)*group,
random = ~ I(age - 8) | subject,
correlation = corCAR1(form = ~ age |subject)
data=Blackmoore)

@ Using 1lmer () in the Ime4 package, but without autocorrelated errors:

lmer (log.exercise ~ I(age - 8)*group + (I(age - 8) | subject),
data=Blackmoore)
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@ Using the Tidyverse for Data Management
@ Overview of the Tidyverse
@ Core Tidyverse Packages
@ Other Tidyverse Packages
@ Should You Commit to the Tidyverse?
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Using the Tidyverse for Data Management

Overview of the Tidyverse

@ The “Tidyverse” is an integrated set of R packages developed by Hadley Wickham and
his collaborators at RStudio (see https://www.tidyverse.org/).

@ The packages are meant to provide a straightforward way to import data into R and to
manipulate the data.

@ There are also Tidyverse tools for R programming and statistical graphics.

@ A central goal of the data-oriented Tidyverse packages is to construct, modify, and
maintain “tidy data” —rectangular data sets in which the rows represent cases and the
columns represent variables.

e Of course, the idea of a rectangular data set greatly antedates the Tidyverse and is
incorporated in the standard R data frame.
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https://www.tidyverse.org/

Using the Tidyverse for Data Management

Core Tidyverse Packages

@ There are eight “core” Tidyverse packages, which can be installed and loaded via the
master tidyverse package:

© readr: Imports rectangular data sets from plain-text files.

@ tibble: The specific implementation of rectangular data sets in the Tidyverse is called a
“tibble,” and tibble objects inherit from the "data.frame" class.

© tidyr: Provides functions to create and maintain rectangular data sets (e.g., to transform
rectangular data sets between "wide” and “long” form).

© dplyr: Provides functions for data manipulation (e.g., adding variables to an existing data
set).

© stringr: Provides functions for manipulating text (character-string) data (e.g., searching for
text).

Q forcats: Provides functions for manipulating R factors (e.g., changing the order of levels of a
factor).

@ purrr: Provides R programming tools (e.g., alternatives to iteration).

© ggplot2: A comprehensive alternative graphics system for R (to be discussed when we take
up R graphics, and a package that is slightly out-of-place in the Tidyverse).
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Using the Tidyverse for Data Management
Other Tidyverse Packages

@ There are other Tidyverse packages, which can be installed and loaded separately, most
notably:

e haven: Imports data from other statistical packages.

e readxl: Imports data from Excel files.

o lubridate: For working with dates.

e magrittr: The style of data manipulation encouraged by the developers of the Tidyverse

makes extensive use of the “pipe” operator, %>%, which is provided by the magritr package.

@ magrittr also includes some other programming-oriented functions.
@ The pipe operator is supplied by several of the core Tidyverse packages.
@ Pipes can be used with standard R functions.
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Using the Tidyverse for Data Management

Should You Commit to the Tidyverse?

@ There are few, if any, Tidyverse functions that don't have close analogs in the standard R
distribution, but the Tidyverse functions are more uniform and many people claim that
they are easier to use (possibly because they're unfamiliar with standard R).

e There are hundreds of functions in the core Tidyverse packages. It isn't obvious that it's
easier to learn the Tidyverse than to learn standard R.

@ There are both advantages and disadvantages to Tidyverse implementations of ideas.

o For example, the print () method for tibbles is nicer than that for data frames (cf., the
brief () function in the car package), but tibbles don't support row names.

@ Tidyverse tools often don't play well with non-Tidyverse tools.

e For example, the data.table package implements a data frame alternative that is superior to
tibbles for large data sets, but data.tables aren’t well supported by Tidyverse functions.
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Should You Commit to the Tidyverse?

@ R is a programming language, and in many cases the simplest and most direct solution to
a problem is to write a program.
e Using the Tidyverse tools effectively requires some programming skills, and a beginner's time
might be better spent learning more general basic R programming.
@ For an interesting general critique of the Tidyverse (with which | don't entirely agree), see
an essay by Norm Matloff at https://github.com/matloff/TidyverseSkeptic.
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© R Programming
@ MLE Estimation of the Binary Logit Models by Newton-Raphson
@ Object-Oriented Programming
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MLE Estimation of the Binary Logit Models by Newton-Raphson

@ The binary logit model is

1
1+ exp(—x!B)

where

e X is the model matrix, with x,-T as its ith row;
e y is the response vector (containing Os and 1s) with Y; as its ith element;
e B is the vector of logistic-regression parameters.
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MLE Estimation of the Binary Logit Models by Newton-Raphson

@ The log-likelihood for the model is

loge L(ﬁ) — ZYI' IOge ¢i + (1 - yi) Ioge (1 T (Pl)
@ The gradient (the vector of partial derivatives) of the log-likelihood with respect to the

parameters is
dlog,. L

3B =Y (vi — ¢i)xi
@ The Hessian (the matrix of second-order partial derivatives) of the log-likelihood is

dlog, L 'OgeTL = XTVX
9Baop
where V = diag{¢;(1 — ¢) }. The variance-covariance matrix of the estimated regression
coefficients is the inverse of the Hessian.
@ Setting the gradient to 0 produces nonlinear estimating equations for B, which have to be
solved iteratively, possibly using the information in the Hessian.
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MLE Estimation of the Binary Logit Models by Newton-Raphson

@ Newton-Raphson is a general method for solving nonlinear equations iteratively.

@ Here:

© Choose initial estimates of the regression coefficients, such as bg = 0.
@ At each iteration t, update the coefficients:

bt = b1+ (XTVt_1X)_1XT(y - pt—l)

where

o pi—1 = {1/[1+exp(—x]bs_1)]} is the vector of fitted response probabilities from the
previous iteration.

o Vi1 =diag{pjr1(1—pit-1)}
© Step 2 is repeated until b; is close enough to b;_1, at which point the MLE B ~ b;. The
estimated asymptotic covariance matrix of the coefficients is given by V(B) =~ (XTV X)~1.
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Object-Oriented Programming in R: The S3 Object System

@ Three standard object-oriented programming systems in R: S3, S4, reference classes. Of
these, the S3 object system is the one most commonly used in applications.

@ How the S3 object system works:

e Method dispatch of the generic function generic() for the object named object, which is
of of class "class" (where = means “the interpreter looks for and dispatches”):
generic(object) = generic.class(object) = generic.default(object)

e For example, summarizing an object mod of class "1m":
summary (mod) = summary.lm(mod)

e Objects can have more than one class, in which case the first applicable method is used.

@ For example, objects produced by glm() are of class c("glm", "1m") and therefore can
inherit methods from class "1m".

@ Methods are searched from left to right, so if mod is produced by a call to glm(), and if
generic(mod) is called, then methods are invoked in the order
generic(mod) = generic.glm(mod) = generic.lm(mod) =
generic.default (mod)
and will fail if none of these three methods are available.
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Object-Oriented Programming in R: The S3 Object System

@ Generic functions take the form:

generic <- function(object, other, named, arguments, ...){
UseMethod ("generic")
}

where the ellipses (...) “soak up” additional arguments not named in the generic
function that may be passed to specific methods when generic() is called.

@ For example, the R summary () function is defined as

summary <- function(object, ...){
UseMethod ("summary")
}
and summary.lm() is
summary.lm <- function (object, correlation=FALSE, symbolic.cor=FALSE, ...){
etc.
}
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