
Introduction to the R Statistical Computing Environment

R Programming I: Exercise

John Fox
(McMaster University)

ICPSR

2021

* Loop versus recursion: Named after a famous medieval Italian mathematician, Fibonacci num-
bers are an integer sequence Fn defined for n = 1, 2, . . . as

F1 = F2 = 1

Fn = Fn−1 + Fn−2 for n > 2

This definition leads straightforwardly to a recursive function to compute Fibonacci numbers;
write such as function, fib0(n). Verify that your function works, as follows:

> sapply(1:10, fib0)

[1] 1 1 2 3 5 8 13 21 34 55

The largest Fibonnaci number that can be represented exactly as a double-precision floating-
point number (on most computers) is F78 = 8, 944, 394, 323, 791, 464, but fib0 would take a
very, very, very long time to compute this number. Let’s consider another approach to the
computation, which is to do it iteratively:

fib1 <- function(n){

if (n <= 2) return(1)

last.minus.1 <- 1

last.minus.2 <- 1

for (i in 3:n){

save <- last.minus.1

last.minus.1 <- last.minus.1 + last.minus.2

last.minus.2 <- save

}

last.minus.1

}

Compare the time required to compute fib0(35) versus fib1(35). Also check that fib1(78)
gives you the right answer. To suppress scientific notation, you can set options(scipen=10).

Finally, although Fibonacci numbers are defined by the recurrence relation above, they may
also be computed directly by Binet’s formula, as

Fn =


(
1+
√
5

2

)n
√

5


1



where the square brackets represent rounding to the nearest integer. Because of rounding
errors on a computer using double-precision floating-point arithmetic, this result produces
an accurate answer only up to F70 = 190, 392, 490, 709, 135. Veryify that this is the case by
programming the formula as fib2(n) and checking fib1(70) and fib1(71) versus fib2(70)
and fib2(71).

2


