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Abstract

Generalized least-squares (GLS) regression extends ordinary least-squares (OLS) estimation
of the normal linear model by providing for possibly unequal error variances and for correlations
between different errors. A common application of GLS estimation is to time-series regression,
in which it is generally implausible to assume that errors are independent. This appendix to
Fox and Weisberg (2019) briefly reviews GLS estimation and demonstrates its application to
time-series data using the gls() function in the nlme package, which is part of the standard R
distribution.

1 Generalized Least Squares

In the standard linear model (for example, in Chapter 4 of the R Companion),

E(y|X) = Xβ

or, equivalently
y = Xβ + ε

where y is the n×1 response vector; X is an n×k+1 model matrix, typically with an initial column
of 1s for the regression constant; β is a k+1×1 vector of regression coefficients to estimate; and ε is
an n×1 vector of errors. Assuming that ε ∼ Nn(0, σ2In), or at least that the errors are uncorrelated
and equally variable, leads to the familiar ordinary-least-squares (OLS ) estimator of β,

bOLS = (X
′
X)
−1

X′y

with covariance matrix
Var(bOLS) = σ2(X

′
X)
−1

More generally, we can assume that ε ∼ Nn(0,Σ), where the error covariance matrix Σ is sym-
metric and positive-definite. Different diagonal entries in Σ error variances that are not necessarily
all equal, while nonzero off-diagonal entries correspond to correlated errors.

Suppose, for the time-being, that Σ is known. Then, the log-likelihood for the model is

logL(β) = −n
2

log 2π − 1
2 log(det Σ)− 1

2 (y −Xβ)′Σ−1(y −Xβ)

which is maximimized by the generalized-least-squares (GLS ) estimator of β,

bGLS = (X′Σ−1X)
−1

X′Σ−1y

with covariance matrix
Var(bGLS) = (X′Σ−1X)

−1
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For example, when Σ is a diagonal matrix of (generally) unequal error variances, then bGLS is just
the weighted-least-squares (WLS ) estimator, which can be fit in R by the lm() function, specifying
the weights arguments (see, e.g., Section 4.9.4 of the R Companion).

In a real application, of course, the error covariance matrix Σ is not known, and must be estimated
from the data along with the regression coefficients β. However, Σ has up to n(n+1)/2 free elements,
so this general model has more parameters than data points. To make progress we require restrictions
on the elements of Σ.

2 Serially Correlated Errors

One common context in which the errors from a regression model are unlikely to be independent is
in time-series data, where the cases represent different moments or intervals of time, usually equally
spaced. We will assume that the process generating the regression errors is stationary : That is, all
of the errors have the same expectation (already assumed to be 0) and the same variance (σ2), and
the covariance of two errors depends only upon their separation s in time:1

C(εt, εt+s) = C(εt, εt−s) = σ2ρs

where ρs is the error autocorrelation at lag s.
In this situation, the error covariance matrix has the following structure:

Σ = σ2



1 ρ1 ρ2 · · · ρn−1
ρ1 1 ρ1 · · · ρn−2
ρ2 ρ1 1 · · · ρn−3
·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

ρn−1 ρn−2 ρn−3 · · · 1


= σ2P

If we knew the values of σ2 and the ρs, then we could apply this result to find the GLS estimator
of β in a time-series regression, but, of course, these are generally unknown parameters. Moreover,
while they are many fewer than the number of elements in the unrestricted error covariance matrix
Σ, the large number (n−1) of different ρs makes their estimation (along with σ2) impossible without
specifying additional structure for the autocorrelated errors.

There are several standard models for stationary time-series; the most common for autocorrelated
regression errors is the first-order auto-regressive process, AR(1):

εt = φεt−1 + νt

where the random shocks νt are assumed to be Gaussian white noise, NID(0, σ2
ν). Under this model,

ρ1 = φ, ρs = φs, and σ2 = σ2
ν/(1 − φ2). Since we must have |φ| < 1, the error autocorrelations ρs

decay exponentially towards 0 as s increases.2

Higher-order autoregressive models are a direct generalization of the first-order model; for exam-
ple, the second-order autoregressive model, denoted AR(2), is

εt = φ1εt−1 + φ2εt−2 + νt

In contrast, in the first-order moving-average process, MA(1), the current error depends upon
the random shock from the current and previous periods (rather than upon the previous regression
error),

εt = νt + ψνt−1

1Adjacent cases are taken by convention to be separated by 1 unit of time—e.g., 1 year in annual time-series data.
2For the AR(1) process to be stationary, |φ| cannot be equal to 1.
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and higher-order MA(q) processes are similarly defined. Finally, AR and MA terms are combined
in ARMA(p, q) processes; for example, ARMA(1, 1) errors follow the process

εt = φεt−1 + νt + ψνt−1

Examining the residual autocorrelations from a preliminary OLS regression can suggest a rea-
sonable form for the error-generating process.3 The lag-s residual autocorrelation is

rs =

∑n
t=s+1 etet−s∑n

t=1 e
2
t

If the residuals were independently distributed (which they are not), the standard error of each
rs would be approximately 1/

√
n, a quantity that can be used as a rough guide to the sampling

variability of the residual autocorrelations. A more accurate approach to testing hypotheses about
autocorrelated errors is to calculate the Dubin-Watson statistics,

Ds =

∑n
t=s+1(et − et−s)2∑n

t=1 e
2
t

which have a known, if complex, sampling distribution that depends upon the model matrix X.
When the sample size is large, Ds ≈ 2(1− rs), and so Durbin-Watson statistics near 2 are indicative
of small residual autocorrelation, those below 2 of positive autocorrelation, and those above 2 of
negative autocorrelation.

3 Using The gls() Function in R

The gls() function in the nlme package (Pinheiro et al., 2018), which is part of the standard R
distribution, fits regression models with a variety of correlated-error and non-constant error-variance
structures.4 To illustrate the use of gls(), let us examine time-series data on women’s crime rates
in Canada, analyzed by Fox and Hartnagel (1979). The data are in the Hartnagel data set in the
carData package, which we load along with the car package:5:

library("car")

Loading required package: carData

brief(Hartnagel, c(6, 2))

38 x 8 data.frame (30 rows omitted)

year tfr partic degrees fconvict ftheft mconvict mtheft

[i] [i] [i] [n] [n] [n] [n] [n]

1 1931 3200 234 12.4 77.1 NA 778.7 NA

2 1932 3084 234 12.9 92.9 NA 745.7 NA

3 1933 2864 235 13.9 98.3 NA 768.3 NA

3In identifying an ARMA process, it helps to look as well at the partial autocorrelations of the residuals. For
example, an AR(1) process has an exponentially decaying autocorrelation function, and a partial autocorrelation
function with a single nonzero spike at lag 1. Conversely, an MA(1) process has an exponentially decaying partial
autocorrelation function, and an autocorrelation function with a single nonzero spike at lag 1. Of course, these neat
theoretical patterns are subject to sampling error.

4The nlme package also has functions for fitting linear and nonlinear mixed models, as described in Chapter 7 of
the R Companion and the on-line appendix on nonlinear regression.

5R functions used but not described in this appendix are discussed in ?. All the R code used in this appendix can
be downloaded from http://tinyurl.com/carbook. Alternatively, if you are running R and attached to the internet,
load the car package and enter the command carWeb(script="appendix-timeseries").
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Figure 1: Time series of Canadian women’s indictable-offense conviction rate, 1931–1968.

4 1934 2803 237 13.6 88.1 NA 733.6 NA

5 1935 2755 238 13.2 79.4 20.4 765.7 247.1

6 1936 2696 240 13.2 91.0 22.1 816.5 254.9

. . .

37 1967 2586 339 80.4 115.2 70.6 781.1 272.0

38 1968 2441 338 90.4 122.9 73.0 849.7 274.7

The variables in the data set are as follows:

� year, 1931–1968.

� tfr, the total fertility rate, births per 1000 women.

� partic, women’s labor-force participation rate, per 1000.

� degrees, women’s post-secondary degree rate, per 10,000.

� fconvict, women’s indictable-offense conviction rate, per 100,000.

� ftheft, women’s theft conviction rate, per 100,000.

� mconvict, men’s indictable-offense conviction rate, per 100,000.

� mtheft, men’s theft conviction rate, per 100,000.

We will estimate the regression of fconvict on tfr, partic, degrees, and mconvict. The
rationale for including the last predictor is to control for omitted variables that affect the crime rate
in general. Let us begin by examining the time series for the women’s conviction rate (Figure 1):

plot(fconvict ~ year, type="n",data=Hartnagel,

ylab="Convictions per 100,000 Women")

grid(lty=1)

with(Hartnagel, points(year, fconvict, type="o", pch=16))

To add grid lines, we used a sequence of commands to draw this graph.6 First the plot() function
is used to set up axes and labels. The argument type="n" suppresses drawing any points. The

6See Chapter 9 of the R Companion for general information about drawing graphs in R.

4



function grid() adds grid lines before adding points and lines. The call to points() adds both
points and lines, with arguments type="o" to overplots points and lines, as is traditional for a time-
series graph, and pch=16 to use filled dots as the plotting characters.7 We can see that the women’s
conviction rate fluctuated substantially but gradually during this historical period, with no apparent
overall trend.

A preliminary OLS regression produces the following fit to the data:

mod.ols <- lm(fconvict ~ tfr + partic + degrees + mconvict, data=Hartnagel)

summary(mod.ols)

Call:

lm(formula = fconvict ~ tfr + partic + degrees + mconvict, data = Hartnagel)

Residuals:

Min 1Q Median 3Q Max

-42.96 -9.20 -3.57 6.15 48.38

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 127.64000 59.95704 2.13 0.041

tfr -0.04657 0.00803 -5.80 1.8e-06

partic 0.25342 0.11513 2.20 0.035

degrees -0.21205 0.21145 -1.00 0.323

mconvict 0.05910 0.04515 1.31 0.200

Residual standard error: 19.2 on 33 degrees of freedom

Multiple R-squared: 0.695, Adjusted R-squared: 0.658

F-statistic: 18.8 on 4 and 33 DF, p-value: 3.91e-08

The women’s crime rate, therefore, appears to decline with fertility and increase with labor-force
participation; the coefficients for the other two predictors have large p-values. A graph of the
residuals from the OLS regression (Figure 2), however, suggests that they may be substantially
autocorrelated:8

plot(Hartnagel$year, residuals(mod.ols), type="o", pch=16,

xlab="Year", ylab="OLS Residuals")

abline(h=0, lty=2)

The acf() function in the R stats package computes and plots the autocorrelation and partial-
autocorrelation functions of a time series, here for the OLS residuals (Figure 3), because the residuals
vary systematically with time:

acf(residuals(mod.ols))

acf(residuals(mod.ols), type="partial")

The broken horizontal lines on the plots correspond to approximate 95% confidence limits. The
general pattern of the autocorrelation and partial autocorrelation functions—sinusoidal decay in the

7There is a ts.plot() function in the stats package in R for graphing time-series data. Although we will not need
them, it is also possible to define special time-series data objects in R. For more information, consult ?ts.

8There also seems to be something unusual going on during World War II that is not accounted for by the predictors,
a subject that we will not pursue here.
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Figure 2: Residuals from the OLS regression of women’s conviction rate on several predictors.
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Figure 3: Autocorrelation and partial-autocorrelation functions for the residuals from the OLS
regression of women’s conviction rate on several predictors.
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former; two spikes, one positive, the other negative, in the latter—is suggestive of an AR(2) process
with φ1 > 0 and φ2 < 0.

We follow up by computing Durbin-Watson statistics for the OLS regression, using the durbin-

WatsonTest() function in the car package. By default, this function computes bootstrapped p -
values for the Durbin-Watson statistics:9

durbinWatsonTest(mod.ols, max.lag=5)

lag Autocorrelation D-W Statistic p-value

1 0.68834 0.61686 0.000

2 0.19227 1.59936 0.124

3 -0.16857 2.31874 0.312

4 -0.36528 2.69905 0.010

5 -0.36732 2.65211 0.014

Alternative hypothesis: rho[lag] != 0

Three of the first five Durbin-Watson statistics have small p=values, including the first. As an
alternative, the dwtest() function in the lmtest package (Zeileis and Hothorn, 2002) computes the
p-value for the first-order Durbin-Watson statistic analytically:

library("lmtest")

Loading required package: zoo

Attaching package: 'zoo'

The following objects are masked from 'package:base':

as.Date, as.Date.numeric

dwtest(mod.ols, alternative="two.sided")

Durbin-Watson test

data: mod.ols

DW = 0.617, p-value = 1.4e-08

alternative hypothesis: true autocorrelation is not 0

Many of the arguments for the gls() function are the same as for lm()—in particular, gls()
takes model, data, subset, and na.action arguments.

� In gls(), na.action defaults to na.fail: Missing data in a time-series in any event require
special consideration.

� The weights argument to gls() can be used to specify a model for the error variance,

� As we will illustrate presently, the correlation argument can be used to specify a model for
error autocorrelation.

� The method argument selects the method of estimation — method="ML" for maximum-likelihood
estimation.10

9See Section 5.2.2 of the R Companion and the on-line appendix on bootstrapping.
10The default method for gls() is "REML" for REstricted Maximum-Likelihood, which may be thought of as correcting

for degrees of freedom. In the current illustration, REML estimation produces rather different results from ML. (Try
it!) To see the full range of arguments to gls(), consult the on-line help.
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For the Canadian women’s crime data:

library("nlme")

mod.gls <- gls(fconvict ~ tfr + partic + degrees + mconvict,

data=Hartnagel, correlation=corARMA(p=2), method="ML")

summary(mod.gls)

Generalized least squares fit by maximum likelihood

Model: fconvict ~ tfr + partic + degrees + mconvict

Data: Hartnagel

AIC BIC logLik

305.41 318.52 -144.71

Correlation Structure: ARMA(2,0)

Formula: ~1

Parameter estimate(s):

Phi1 Phi2

1.06835 -0.55073

Coefficients:

Value Std.Error t-value p-value

(Intercept) 83.340 59.471 1.4014 0.1704

tfr -0.040 0.009 -4.3086 0.0001

partic 0.288 0.112 2.5677 0.0150

degrees -0.210 0.207 -1.0158 0.3171

mconvict 0.076 0.035 2.1619 0.0380

Correlation:

(Intr) tfr partic degres

tfr -0.773

partic -0.570 0.176

degrees 0.093 0.033 -0.476

mconvict -0.689 0.365 0.047 0.082

Standardized residuals:

Min Q1 Med Q3 Max

-2.49915 -0.37170 -0.14945 0.33724 2.90947

Residual standard error: 17.702

Degrees of freedom: 38 total; 33 residual

Specifying the correlation structure as correlation=corARMA(p=2) fits an AR(2) process for the
errors; that is, the moving-average component is implicitly of order q=0, and hence is absent. In this
instance, the ML estimates of the regression parameters under the AR(2) error-correlation model
are not terribly different from the OLS estimates, although the coefficient for mconvict now has a
smaller p-value. The ML estimates of the error-autoregressive parameters are sizable, φ̂1 = 1.068
and φ̂2 = −0.551.

We can employ likelihood-ratio tests to check whether the parameters of the AR(2) process for
the errors are necessary, and whether a second-order autoregressive model is sufficient. We proceed
by updating the original "gls" model, respecifying the time-series process for the errors; we then
compare nested models using the generic anova() function, which has a method for "gls" objects:
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mod.gls.3 <- update(mod.gls, correlation=corARMA(p=3))

mod.gls.1 <- update(mod.gls, correlation=corARMA(p=1))

mod.gls.0 <- update(mod.gls, correlation=NULL)

anova(mod.gls, mod.gls.1) # AR(2) vs AR(1)

Model df AIC BIC logLik Test L.Ratio p-value

mod.gls 1 8 305.42 318.52 -144.71

mod.gls.1 2 7 312.42 323.89 -149.21 1 vs 2 9.0089 0.0027

anova(mod.gls, mod.gls.0) # AR(2) vs uncorrelated errors

Model df AIC BIC logLik Test L.Ratio p-value

mod.gls 1 8 305.41 318.52 -144.71

mod.gls.0 2 6 339.00 348.83 -163.50 1 vs 2 37.587 <.0001

anova(mod.gls.3, mod.gls) # AR(3) vs AR(2)

Model df AIC BIC logLik Test L.Ratio p-value

mod.gls.3 1 9 307.40 322.13 -144.70

mod.gls 2 8 305.42 318.52 -144.71 1 vs 2 0.018467 0.8919

An AR(3) specification would be unusually complicated, but in any event the tests support the
AR(2) specification.

4 Complementary Reading and References

Time-series regression and GLS estimation are covered in Fox (2016, Chap. 16). GLS estimation
is a standard topic in econometrics texts. There are substantial treatments in Judge et al. (1985)
and in Greene (2018), for example. Likewise, ARMA models are a standard topic in the time-series
literature; see, for example, Chatfield (2003). Time-series regression is also a much larger topic
than GLS estimation of linear models with autocorrelated errors; in additions to the references cited
above, see Pickup (2015) for a broad and accessible overview with social-science examples.
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