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MIXED DATA KERNEL COPULAS

JEFFREY S. RACINE

Abstract. A number of approaches towards the kernel estimation of copula have appeared in
the literature. Most existing approaches use a manifestation of the copula that requires kernel
density estimation of bounded variates lying on a d-dimensional unit hypercube. This gives rise
to a number of issues as it requires special treatment of the boundary and possible modifications
to bandwidth selection routines, among others. Furthermore, existing kernel-based approaches are
restricted to continuous date types only, though there is a growing interest in copula estimation
with discrete marginals (see e.g. Smith & Khaled (2012) for a Bayesian approach). We demonstrate
that using a simple inversion method (cf Nelsen (2006), Fermanian & Scaillet (2003)) can sidestep
boundary issues while admitting mixed data types directly thereby extending the reach of kernel
copula estimators. Bandwidth selection proceeds by the recently proposed method of Li & Racine
(2013). Furthermore, there is no curse-of-dimensionality for the kernel-based copula estimator
(though there is for the copula density estimator, as is the case for existing kernel copula density
methods).

1. Background

Copulas are functions that “couple” multivariate distribution functions to their one-dimensional

marginal distribution functions (Nelsen (2006, Page 1)). Copulas are popular as they provide scale

free measures of dependence among components of random vectors and are also useful when charac-

terizing co-monotonicity among variables or when analyzing the behaviour of variables that simul-

taneously assume large (small) values. Given that the study of copulae is the study of (unknown)

marginal and joint distributions, nonparametric approaches have obvious appeal, particularly in

light of the fact that very few parametric copulae can be generalized beyond two variables. A num-

ber of nonparametric approaches have been proposed, but they suffer from certain limitations that

restrict their general utility. Furthermore, there is a growing interest in estimation of copula with

discrete marginals and/or a mix of discrete and continuous marginals. Here the recent development

of nonparametric approaches with mixed data types is ideally suited to this task. We propose an

approach that is fully data-driven, supports mixed data types, and does not suffer from some of

the complications associated with many existing kernel-based approaches.

Copula-based econometric approaches have recently become widely embraced by econometri-

cians. By way of illustration, in their authoritative survey of multivariate GARCH models Bauwens,
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Laurent & Rombouts (2006) outline approaches for parametric copula-MGARCH models. These

models are specified by GARCH equations for the conditional variances, marginal distributions for

each series along with a conditional copula function. The copula here is rendered time-varying via

its parameters which may themselves be functions of past data. The benefit of such approaches is

the flexible nature of their joint distributions, at least in the bivariate case. In a well-written and

accessible book aimed towards applied econometricians, Trivedi & Zimmer (2007) outline the use

of parametric copulas in Econometrics with an emphasis on estimation and misspecification. An

appealing aspect of parametrically specified copulas is that estimation and inference are based on

standard maximum likelihood procedures. We direct the interested reader to these encyclopedic

references that capture the salient features of parametric copulas and their use by econometricians.

Semiparametric copula models which are more flexible than fully parametric models but not as flex-

ible as nonparametric models have been considered Tsukahara (2005), Chen, Fan & Tsyrennikov

(2006) and Chen, Wu & Yi (2009), among others. The approach we propose allows practitioners

to go beyond the potentially limiting nature of parametric copulas by embracing nonparametric

methods that are computationally efficient and that handle the range of (ordered) categorical and

continuous datatypes often encountered in applied settings.

2. Kernel Copula Estimation – Existing Approaches

Without loss of generality (all that follows holds for the general multivariate d ≥ 2 setting), let

X and Y be two real-valued random variables with distribution functions F (x) and G(y). Existing

kernel-based approaches towards estimating copula use (2.3.1) in Nelsen (2006) (see e.g. Gijbels &

Mielniczuk (1990) for copula density estimation1 and Chen & Huang (2007) for copula estimation)

which is given by

(1) H(x, y) = C(F (x), G(y)).

Given that F (x) and G(y) lie in [0, 1], this approach requires special treatment of the boundary

(see Müller & Stadtmüller (1999) for an analysis of kernel estimation with multivariate boundary

regions). In multivariate settings this raises a number of issues, both theoretical and practical, and

may require different degrees of smoothing near the boundary from that for the interior which can

further complicate bandwidth selection.

In addition to (1) requiring boundary corrections, another issue arises as there are ‘two levels

of smoothing’ adopted for many existing approaches (this is a separate issue from the differential

smoothing near the boundary mentioned above). For instance, Chen & Huang (2007) advocate

using the univariate CDF bandwidth selection approach of Bowman, Hall & Prvan (1998) for each

of the marginals (i.e. ûx = F̂ (x) and ûy = Ĝ(y), and then propose a plug-in method for bandwidth

selection of the copula (i.e. the joint distribution Ĉ(ûx, ûy)). However, since these û and ûy values

are constructed from marginals computed from univariate bandwidth selectors, these will not be

1Whereas the copula and joint CDF coincide, the same does not hold for the copula density which is obtained by
differentiation of the copula with respect to uj as outlined in (6)
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equal to the marginals (i.e. those integrated from the joint copula) coming from the copula that

uses the (joint) plug-in bandwidths, which ought to be unsettling (i.e. bandwidths optimal for

univariate CDFs differ from those optimal for joint CDFs as they ignore dependence for one). That

is, the marginal CDF for X obtained from the copula is ũ = C(ûx, 1) (i.e. the ‘marginal copula’)

which will not equal ûx since the bandwidth associated with ũ = C(ûx, 1) will be that from the

plug-in (joint) copula while that associated with ûx will be that from the (univariate) application

of Bowman et al. (1998). This guarantees that in finite-sample settings the estimated copula will

not coincide with the joint distribution Ĥ(x, y), and will be internally inconsistent, which should

be cause for concern. The approach we consider does not suffer from this drawback. Related work

involving polynomials as opposed to kernels includes Bouezmarni, Rombouts & Taamouti (2012)

who apply the Bernstein copula density estimator which is based on (1) but is also free from the

boundary bias problem which often occurs with conventional nonparametric kernel estimators in

this setting.

3. Kernel Copula Estimation – An Inversion Approach

For the inversion approach, we exploit Sklar’s theorem (Nelsen (2006, Corollary 2.3.7)) to produce

copulas directly from the joint distribution function similar to Fermanian & Scaillet (2003). Given

a bivariate distribution function H with continuous marginals F and G, we can “invert” (Nelsen

(2006, Page 51)) to obtain the copula using

(2) C(ux, uy) = H(F−1(ux), G−1(uy)).

Here we produce copulas directly from the joint distribution function using C(ux, uy) =

H(F−1(ux), G−1(uy)) rather than the typical approach that instead uses H(x, y) = C(F (x), G(y)).

Of course, the object C(·) is well-defined regardless of which representation is used, and must co-

incide with H(·). But implementation is complicated unnecessarily by the use of (1) which we

avoid here. Taking this approach we directly obtain Ĥ(x, y) = Ĥ(F̂−1(ûx), Ĝ−1(ûy)) = Ĉ(ûx, ûy).

The approach proposed by Fermanian & Scaillet (2003) is for continuous datatypes only, and they

consider ad-hoc bandwidths (hi = σ̂in
−1/5, j = 1, 2), which are not optimal for either copula or

copula density estimation. In addition to considering the mixed data setting, we also exploit recent

developments in multivariate CDF bandwidth selection developed in Li & Racine (2013) which

are optimal for the copula (see also Li, Lin & Racine (2013) for multivariate conditional CDF

bandwidth selection which are optimal for the conditional copula).

Having directly estimated Ĥ(x, y), for each marginal we use the associated bandwidth used

to compute Ĥ(x, y) and compute implied ûx and ûy directly thereby delivering Ĉ(ûx, ûy). Each

marginal sample realization (i.e. xi) therefore has direct ûxi = F̂ (xi) where

(3) F̂ (x) =

∫ x

−∞
f̂(v) dv =

1

n

n∑
i=1

K
(
x−Xi

h

)
,
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where K(x) =
∫ x
−∞K(v) dv and K(v) is a standard kernel used for kernel density estimation

such as the Gaussian or Epanechnikov. This directly delivers Ĥ(x,∞) = Ĉ(ûx, 1) guaranteeing

that the quantiles F̂−1(ûx), the ûx, and the Ĉ(ûx, 1) estimates are internally consistent, which is

axiomatically desirable. Furthermore, if we need to evaluate the copula at a (ux, uy) pair other

than the sample (ûxi , ûyi), this is readily available as demonstrated in Li & Racine (2008), who

compute quantiles e.g. xu by choosing xu to minimize the following objective function:

(4) x̂u = arg min
x

(u− F̂ (x))2.

Alternatively, one could compute the ‘quasi-inverse’ (see Nelsen (2006, Definition 2.3.6, page 21)).

We adopt this approach in our implementation which we now briefly describe. The quasi inverse is

given by

(5) F (−1)(u) = inf{x|F (x) ≥ u}.

To operationalize this inverse we construct a very fine grid of points x′1, x
′
2, . . . that extends far

beyond the support of the data then, for any arbitrary u ∈ [0, 1], the quasi-inverse is that value

among the x′1, x
′
2, . . . satisfying (5).

Not only does this approach avoid the use of boundary corrections and avoid potential divergence

between the marginals derived from the copula and those used to construct the copula, but in

addition, standard distributional theory holds as this approach is based on direct application of

conventional kernel estimators (see e.g. Liu & Yang (2008)).

For copula density estimation we can use the same approach again avoiding complications arising

from the use of boundary kernels and so forth.

The copula density is

c(u) =
∂dC(u1, . . . , ud)

∂u1 · · · ∂ud

=
f(F−11 (u1), . . . , F

−1
d (ud))

f1(F
−1
1 (u1)) · · · f(F−1d (ud))

(6)

which, for independent random variates, is clearly equal to one, and is ‘scale free’ by design. For

mixed data types we suggest the least-squares cross-validation bandwidth selector of Li & Racine

(2003). The copula density may be unfamiliar to some readers. For positively correlated bivariate

normal data, both the parametric and nonparametric copula density estimators resemble the plot

on the lower left of Figure 2.

4. Copula and Dependence

As pointed out by a number of authors (e.g. Fermanian & Scaillet (2003)), there are two reasons

why copulas are popular, namely a) to characterize independence and co-monotonicity among

variables and b) to analyze the behaviour of variables when they simultaneously assume large

(small) values. We briefly discuss these potential applications below.
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4.1. Independence and Co-Monotonicity. Copulas characterize independence and co-

monotonicity between random variables. It is well known that a set of random variables are

independent if and only if their joint PDFs (CDFs) are equal to the product of their marginal

PDFs (CDFs). In terms of the copula function, this means that independence is characterized by

C(u) =
∏d

j=1 uj , for all u. Furthermore, each random variable is almost surely a strictly increasing

function of any of the others (co-monotonicity) if and only if C(u) = min(u1, . . . , ud), for all u.

As well, copulas are intimately related to standard measures of dependence between two real

valued random variables X and Y , whose copula is C. Indeed, the population versions of Kendall’s

tau, Spearman’s rho, Gini’s gamma and Blomqvist’s beta can be expressed as:

τx,y = 1− 4

∫ 1

0

∫ 1

0

∂C(ux, uy)

∂ux

∂C(ux, uy)

∂uy
dux duy,

ρx,y = 12

∫ 1

0

∫ 1

0
C(ux, uy) dux duy − 3,

γx,y = 4

∫ 1

0

∫ 1

0
[C(ux, 1− ux) + C(ux, ux)] dux − 2,

βx,y = 4C(1/2, 1/2)− 1.

Note that the derivations used to obtain (6) are the same as those for delivering objects such as

∂dC(u1, . . . , ud)/∂uj above.

4.2. Tail Dependence. Copulas can be used to analyze how two random variables behave together

when they simultaneously assume large (small) values. In finance, for example, this could prove

useful for examining the joint behaviour of small returns, especially large negative returns (large

losses). This type of behaviour can be described by “positive quadrant dependence” (Lehmann

(1966)).

Two random variables X and Y are said to be “positively quadrant dependent” (PQD, “positive

orthant dependence” POD for more than two variables) if, for all (x, y) in R2,

(7) P [X ≤ x, Y ≤ y] ≥ P [X ≤ x]P [Y ≤ y].

This states that two random variables are PQD if the probability that they are simultaneously small

is at least as great as it would be if they were independent. Inequality (7) can be rewritten in terms of

the copula C of the two random variables, since (7) is equivalent to the condition C(ux, uy) ≥ uxuy,

for all (ux, uy) in [0, 1]2. Finally inequality (7) can be rewritten P [X ≤ x|Y ≤ y] ≥ P [X ≤ x] by

application of Bayes’ rule. The PQD condition may be strengthened by requiring the conditional

probability being a non increasing function of y. This implies that the probability that the return X

takes a small value does not increase as the value taken by the other return increases. It corresponds

to particular monotonicities in the tails. We say that a random variable X is left tail decreasing

in Y , denoted LTD(X|Y ), if P [X ≤ x|Y ≤ y] is a non increasing function of y for all x. This in

turn is equivalent to the condition that, for all ux in [0, 1], C(ux, uy)/uy is non increasing in uy, or

∂C(ux, uy)/∂uy ≤ C(ux, uy)/uy for almost all uy.
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The notions of independence, PQD, and LTD are characterized in terms of copulas. These

may be verified once copulas have been estimated. With the mixed data kernel copula estimators

outlined above, these concepts naturally generalize to this setting. Inference has been considered

by a number of authors (see Denuit & Scaillet (2004) and Scaillet (2005), among others).

5. Illustrations

The presence of mixed data proceeds directly using the approach outlined in Li & Racine (2003).

By way of illustration we begin with a trivariate illustration, and then consider three bivariate

settings below involving two continuous variables, one continuous and one discrete variable, and

two discrete variables, respectively.

5.1. A Trivariate Gaussian Copula, ρxy = ρxz = ρyz = 0.99, n = 1000. By way of illustra-

tion we consider d = 3 and simulate data from a trivariate Gaussian distribution with Gaussian

marginals. This is intended to demonstrate the ease with which high dimensional copula can be

estimated in light of the fact that very few parametric copulae can be generalized beyond two

variables.

We evaluate the copula at the sample realizations and present a 3D scatter plot for ûx, ûy,

and ûz.
2 We use multivariate least-squares cross-validation and obtain bandwidths ĥx=0.02487,

ĥy=0.02075, and ĥz=0.02751. This sample contained n =1000 observations. We also simulate a

discretized variant of the above where we discretize two variables (Y and Z) into equi-quantile

ranges and then treat them as ‘ordered factors’. We use multivariate least-squares cross-validation

and obtain bandwidths ĥx=0.05922, ĥy=2.204e-10, and ĥz=1.764e-07. Results are plotted in Figure

1.
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Figure 1. Trivariate Gaussian Copula, ρxy = ρxz = ρyz = 0.99, n = 1000, X,Y, Z
numeric (left) and X numeric, Y,Z discrete (right).

2An anonymous referee has pointed out that the figures could present the results using N(0, 1) margins (at least for
the continuous examples) instead of uniform margins, suggesting that elliptical shapes are easier to interpret and
grasp. We follow the convention outlined in Nelsen (2006) below, however, the reader may wish to consider the
N(0, 1) translation suggested by the anonymous referee when dealing solely with continuous data.
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5.2. A Bivariate Gaussian Copula, ρxy = 0.99, n = 1000. We consider data simulated from

a Gaussian copula with Gaussian marginals with ρxy = 0.99. We draw n = 1000 observations

and construct the copula using the inversion approach described above. We use multivariate least-

squares cross-validation and obtain bandwidths ĥx=0.03522 and ĥy=0.03892 for the copula and

ĥx=0.06979 and ĥy=0.06538 for the density. Results are plotted in Figure 2.

ûx

û
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Figure 2. Gaussian Copula, ρxy = 0.99, n = 1000. The first row of figures present
contour plots for the nonparametric copula and copula density estimate (black/solid
lines) and true copula and copula density (red/dashed lines), then the nonparametric
copula. The second row of figures presents the nonparametric copula density, the
nonparametric dependence measure PQD (C(ux, uy)−uxuy) and the nonparametric
copula scatter plot for the sample realizations.
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5.3. A Bivariate Mixed Copula, ρxy = 0.99, n = 1000. We consider data simulated from a

Gaussian copula with Gaussian marginals with ρxy = 0.99, but we discretize the one variable into

equi-quantile ranges and then treat it as an ‘ordered factor’. We draw n = 1000 observations

and construct the copula using the inversion approach described above. We use multivariate least-

squares cross-validation and obtain bandwidths ĥx=0.07391 and ĥy=4.456e-07 for the copula and

ĥx=0.08198 and ĥy=7.101e-11 for the density. Results are plotted in Figure 3.
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Figure 3. Mixed data Gaussian Copula, ρxy = 0.99, n = 1000. The first row of
figures present contour plots for the nonparametric copula and copula density, then
the nonparametric copula itself. The second row of figures presents the nonparamet-
ric copula density, the nonparametric dependence measure PQD (Ĉ(ûx, ûy)− ûxûy)
and the nonparametric copula scatter plot for the sample realizations.
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5.4. A Bivariate Discrete Copula, ρxy = 0.99, n = 1000. We consider data simulated from a

Gaussian copula with Gaussian marginals with ρxy = 0.99, but we discretize the data into equi-

quantile ranges and then treat them as ‘ordered factors’. We draw n = 1000 observations and

construct the copula using the inversion approach described above. We use multivariate least-

squares cross-validation and obtain bandwidths ĥx=0.0002367 and ĥy=0.004094 for the copula and

ĥx=0.01112 and ĥy=0.01141 for the density. Results are plotted in Figure 4.
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Figure 4. Discretized Gaussian Copula, ρxy = 0.99, n = 1000. The first row of
figures present contour plots for the nonparametric copula and copula density, then
the nonparametric copula itself. The second row of figures presents the nonparamet-
ric copula density, the nonparametric dependence measure PQD (Ĉ(ûx, ûy)− ûxûy)
and the nonparametric copula scatter plot for the sample realizations.
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5.5. A Bivariate Gaussian Copula, ρxy = 0, n = 1000. We consider data simulated from a

Gaussian copula with Gaussian marginals with ρxy = 0. We draw n = 1000 observations and con-

struct the copula using the inversion approach described above. We use multivariate least-squares

cross-validation and obtain bandwidths ĥx=0.2043 and ĥy=0.1677 for the copula and ĥx=0.2706

and ĥy=0.3082 for the density. Results are plotted in Figure 5.
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Figure 5. Gaussian Copula, ρxy = 0, n = 1000. The first row of figures present
contour plots for the nonparametric copula and copula density estimate (black/solid
lines) and true copula and copula density (red/dashed lines), then the nonparametric
copula. The second row of figures presents the nonparametric copula density, the
nonparametric dependence measure PQD (Ĉ(ûx, ûy)− ûxûy) and the nonparametric
copula scatter plot for the sample realizations.
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5.6. A Bivariate Mixed Copula, ρxy = 0, n = 1000. We consider data simulated from a

Gaussian copula with Gaussian marginals with ρxy = 0, but we discretize the one variable into

equi-quantile ranges and then treat it as an ‘ordered factor’. We draw n = 1000 observations

and construct the copula using the inversion approach described above. We use multivariate least-

squares cross-validation and obtain bandwidths ĥx=0.1986 and ĥy=5.185e-07 for the copula and

ĥx=0.3786 and ĥy=0.1702 for the density. Results are plotted in Figure 6.
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Figure 6. Mixed data Gaussian Copula, ρxy = 0, n = 1000. The first row of figures
present contour plots for the nonparametric copula and copula density, then the
nonparametric copula itself. The second row of figures presents the nonparametric
copula density, the nonparametric dependence measure PQD (Ĉ(ûx, ûy)−ûxûy) and
the nonparametric copula scatter plot for the sample realizations.
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5.7. A Bivariate Discrete Copula, ρxy = 0, n = 1000. We consider data simulated from a

Gaussian copula with Gaussian marginals with ρxy = 0, but we discretize the data into equi-

quantile ranges and then treat them as ‘ordered factors’. We draw n = 1000 observations and

construct the copula using the inversion approach described above. We use multivariate least-

squares cross-validation and obtain bandwidths ĥx=0.002785 and ĥy=0.01063 for the copula and

ĥx=0.2798 and ĥy=0.2877 for the density. Results are plotted in Figure 7.
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û
y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0
.4

0.
6

0
.8

1
.0

ûx
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Figure 7. Discretized Gaussian Copula, ρxy = 0, n = 1000. The first row of figures
present contour plots for the nonparametric copula and copula density, then the
nonparametric copula itself. The second row of figures presents the nonparametric
copula density, the nonparametric dependence measure PQD (Ĉ(ûx, ûy)−ûxûy) and
the nonparametric copula scatter plot for the sample realizations.
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5.8. A Bivariate Gaussian Copula, ρxy = −0.99, n = 1000. We consider data simulated from

a Gaussian copula with Gaussian marginals with ρxy = −0.99. We draw n = 1000 observations

and construct the copula using the inversion approach described above. We use multivariate least-

squares cross-validation and obtain bandwidths ĥx=0.05094 and ĥy=0.04634 for the copula and

ĥx=0.06538 and ĥy=0.06978 for the density. Results are plotted in Figure 8.
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ûx

0.0
0.2

0.4
0.6

0.8
1.0û
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Figure 8. Gaussian Copula, ρxy = −0.99, n = 1000. The first row of figures
present contour plots for the nonparametric copula and copula density estimate
(black/solid lines) and true copula and copula density (red/dashed lines), then the
nonparametric copula. The second row of figures presents the nonparametric copula
density, the nonparametric dependence measure PQD (Ĉ(ûx, ûy) − ûxûy) and the
nonparametric copula scatter plot for the sample realizations.
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5.9. A Bivariate Mixed Copula, ρxy = −0.99, n = 1000. We consider data simulated from a

Gaussian copula with Gaussian marginals with ρxy = −0.99, but we discretize the one variable

into equi-quantile ranges and then treat it as an ‘ordered factor’. We draw n = 1000 observations

and construct the copula using the inversion approach described above. We use multivariate least-

squares cross-validation and obtain bandwidths ĥx=0.07567 and ĥy=0.0225 for the copula and

ĥx=0.08983 and ĥy=2.296e-12 for the density. Results are plotted in Figure 9.
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ûx

0.0
0.2

0.4
0.6

0.8
1.0û
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Figure 9. Mixed data Gaussian Copula, ρxy = −0.99, n = 1000. The first row of
figures present contour plots for the nonparametric copula and copula density, then
the nonparametric copula itself. The second row of figures presents the nonparamet-
ric copula density, the nonparametric dependence measure PQD (Ĉ(ûx, ûy)− ûxûy)
and the nonparametric copula scatter plot for the sample realizations.
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5.10. A Bivariate Discrete Copula, ρxy = −0.99, n = 1000. We consider data simulated from

a Gaussian copula with Gaussian marginals with ρxy = −0.99, but we discretize the data into

equi-quantile ranges and then treat them as ‘ordered factors’. We draw n = 1000 observations

and construct the copula using the inversion approach described above. We use multivariate least-

squares cross-validation and obtain bandwidths ĥx=0.01971 and ĥy=0.02057 for the copula and

ĥx=0.01172 and ĥy=0.01148 for the density. Results are plotted in Figure 10.
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ûx

0.0
0.2

0.4
0.6

0.8
1.0û
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Figure 10. Discretized Gaussian Copula, ρxy = −0.99, n = 1000. The first row of
figures present contour plots for the nonparametric copula and copula density, then
the nonparametric copula itself. The second row of figures presents the nonparamet-
ric copula density, the nonparametric dependence measure PQD (Ĉ(ûx, ûy)− ûxûy)
and the nonparametric copula scatter plot for the sample realizations.
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6. Applications

Below we consider two applications that may be of interest to the reader. The first considers

a bivariate mixed-data setting modelling (log) wages and number of dependants, while the second

considers a bivariate continuous data setting involving two financial indices.

6.1. A Bivariate Mixed Data Application to (log) Wages and Number of Dependants

(Wooldridge’s ‘wage1’ Dataset). We consider (log) wages and number of dependants living in

a household. The data is cross-section wage data consisting of a random sample taken from the

U.S. Current Population Survey for the year 1976 (Wooldridge’s (2003)). Results are presented in

Figure 11. We use multivariate least-squares cross-validation and obtain bandwidths ĥx=0.01618

and ĥy=1.61e-10 for the copula and ĥx=0.2059 and ĥy=2.488e-11 for the density. This sample

contained n =526 observations.
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y

0.0

0.2

0.4
0.6
0.8
1.0

P
Q
D

0.00

0.05

0.10

0.15

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

ûx
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Figure 11. Bivariate Copula for (log) wages and number of dependants. The
first row of figures present contour plots for the nonparametric copula and copula
density, then the nonparametric copula itself. The second row of figures presents
the nonparametric copula density, the nonparametric dependence measure PQD
(Ĉ(ûx, ûy) − ûxûy) and the nonparametric copula scatter plot for the sample real-
izations.

This illustration demonstrates that copula and various measures can be readily computed in

mixed-data settings.
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6.2. A Bivariate Continuous Data Application to the Merval and Hang Seng Stock

Indices. In Finance, issues of diversification and co-movement play a key role in portfolio analysis.

We consider daily closing values of two indices, Merval (Buenos Aires) and Hang Seng (Hong Kong),

for the dates 1996-10-08 through 2012-07-30. Index values are paired for trade days common to

both to ensure temporal pairing is correct. Results are presented in Figure 12. We use multivariate

least-squares cross-validation and obtain bandwidths ĥx=11.06 and ĥy=147.1 for the copula and

ĥx=14.33 and ĥy=194.3 for the density. This sample contained n =3766 observations.

ûx
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Figure 12. Bivariate Copula for the Merval and Hang Seng indices. The first row of
figures present contour plots for the nonparametric copula and copula density, then
the nonparametric copula itself. The second row of figures presents the nonparamet-
ric copula density, the nonparametric dependence measure PQD (Ĉ(ûx, ûy)− ûxûy)
and the nonparametric copula scatter plot for the sample realizations.

We observe that the dependence measure PQD plotted in Figure 12 is uniformly non-negative

indicating that these two indices display this feature (a formal test could be predicated on Scaillet

(2005)).

By way of comparison, we fit a parametric Gaussian copula and compare and contrast the

contour plots for the parametric and nonparametric copulas. Results are presented in Figure 13.

It is evident from this dataset that the parametric copula imposes structure on the data that may

distort subsequent analysis.
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ûx

û
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Figure 13. Comparison of parametric versus nonparametric bivariate Copula for
the Merval and Hang Seng indices. The figures present contour plots for the para-
metric and nonparametric copula and copula density, respectively (the nonparamet-
ric contours are black/solid lines, parametric red/dashed).

7. Summary

We apply recently developed methods for optimal bandwidth selection and kernel estimation

of (unconditional) PDFs and CDFs to the problem of copula modeling. Nonparametric methods

are particularly well-suited to this problem domain. Furthermore, by taking an approach based

on inversion of marginal CDFs and PDFs we avoid the need for boundary kernels which can be

challenging in multidimensional settings, particularly as the dimension d increases beyond 2. In

addition, no new theory is required. Our approach is fully general, delivers
√
n-consistent estimates

of the copula that are dimension free hence circumvents the curse of dimensionality that plagues

nonparametric approaches (the copula density, however, does suffer from this limitation). Measures

of dependence can then be computed directly from the estimated copula. An implementation in

the R package ‘np’ (Hayfield & Racine (2008, Version 0.50-1, function ‘npcopula’)) is available for

the interested reader.
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R Code for the ‘wage1’ example

The following R code is based on the R package ‘np’ (Hayfield & Racine (2008, Version 0.50-1,

function ‘npcopula’)) and generates the example based on Wooldridge’s (2003) ‘wage1’ data. Note

that the plots exploit the ‘tikzDevice’ package that allows the use of TEX symbols directly in figures.

data(wage1)

mydat <- with(wage1, data.frame(lwage = lwage, numdep = ordered(numdep)))

bw.copula <- npudistbw(~lwage + numdep, ckertype = ckertype, bwmethod = "cv.cdf",

data = mydat)

q.min <- 0

q.max <- 1

grid.seq <- seq(q.min, q.max, length = n.eval)

u <- cbind(grid.seq, grid.seq)

q.density.min <- 0.025

q.density.max <- 0.975

grid.density.seq <- seq(q.density.min, q.density.max, length = n.eval)

u.density <- cbind(grid.density.seq, grid.density.seq)

## Full range copula on evaluation grid

mycopula <- npcopula(bws = bw.copula, data = mydat, u = u)

## Full range empirical copula

mycopula.emp <- npcopula(bws = bw.copula, data = mydat)

## Restricted range copula on evaluation grid

bw.density <- npudensbw(~lwage + numdep, ckertype = ckertype, bwmethod = "cv.ml",

data = mydat)

mycopula.density <- npcopula(bws = bw.density, data = mydat, u = u.density)

C.xy <- mycopula$copula

c.xy <- mycopula.density$copula

## Copula contour plot

contour(x = grid.seq, y = grid.seq, z = matrix(C.xy, n.eval, n.eval), xlab = "$\\hat u_x$",

ylab = "$\\hat u_y$")

## Copula density contour plot

contour(x = grid.seq, y = grid.seq, z = matrix(c.xy, n.eval, n.eval), xlab = "$\\hat u_x$",

ylab = "$\\hat u_y$", levels = seq(0.5, 2.5, by = 1))

## Copula perspective plot

persp(x = grid.seq, y = grid.seq, z = matrix(C.xy, n.eval, n.eval), xlab = "$\\hat u_x$",

ylab = "$\\hat u_y$", zlab = "Copula", zlim = c(0, 1), ticktype = "detailed",

theta = 330, phi = 25)

## Copula density perspective plot

persp(x = grid.density.seq, y = grid.density.seq, z = matrix(c.xy, n.eval, n.eval),

xlab = "$\\hat u_x$", ylab = "$\\hat u_y$", zlab = "Copula Density",

ticktype = "detailed", theta = 170, phi = 25)
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## Measure of positive quadrant dependence plotted via persp

PQD <- mycopula$copula - mycopula$u1 * mycopula$u2

persp(x = grid.seq, y = grid.seq, z = matrix(PQD, n.eval, n.eval), xlab = "$\\hat u_x$",

ylab = "$\\hat u_y$", zlab = "PQD", ticktype = "detailed", theta = 330,

phi = 25)

## Empirical copula scatter plot

plot(mycopula.emp$u1, mycopula.emp$u2, xlab = "$\\hat u_x$", ylab = "$\\hat u_y$",

cex = 0.25)
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